Cargando…

Development and deployment of a field-portable soil O(2) and CO(2) gas analyzer and sampler

Here we present novel method development and instruction in the construction and use of Field Portable Gas Analyzers study of belowground aerobic respiration dynamics of deep soil systems. Our Field-Portable Gas Analysis (FPGA) platform has been developed at the Calhoun Critical Zone Observatory (CC...

Descripción completa

Detalles Bibliográficos
Autores principales: Brecheisen, Zachary S., Cook, Charles W., Heine, Paul R., Ryang, Junmo, Richter, Daniel deB.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713318/
https://www.ncbi.nlm.nih.gov/pubmed/31461460
http://dx.doi.org/10.1371/journal.pone.0220176
Descripción
Sumario:Here we present novel method development and instruction in the construction and use of Field Portable Gas Analyzers study of belowground aerobic respiration dynamics of deep soil systems. Our Field-Portable Gas Analysis (FPGA) platform has been developed at the Calhoun Critical Zone Observatory (CCZO) for the measurement and monitoring of soil O(2) and CO(2) in a variety of ecosystems around the world. The FPGA platform presented here is cost-effective, lightweight, compact, and reliable for monitoring dynamic soil gasses in-situ in the field. The FPGA platform integrates off-the-shelf components for non-dispersive infrared (NDIR) CO(2) measurement and electro-chemical O(2) measurement via flow-through soil gas analyses. More than 2000 soil gas measurements have been made to date using these devices over 4 years of observations. Measurement accuracy of FPGAs is consistently high as validated via conventional bench-top gas chromatography. Further, time series representations of paired CO(2) and O(2) measurement under hardwood forests at the CCZO demonstrate the ability to observe and track seasonal and climatic patterns belowground with this FPGA platform. Lastly, the ability to analyze the apparent respiratory quotient, the ratio of apparent CO(2) accumulation divided by apparent O(2) consumption relative to the aboveground atmosphere, indicates a high degree of nuanced analyses are made possible with tools like FPGAs. In sum, the accuracy and reliability of the FPGA platform for soil gas monitoring allows for low-cost temporally extensive and spatially expansive field studies of deep soil respiration.