Cargando…
Melatonin acts synergistically with auxin to promote lateral root development through fine tuning auxin transport in Arabidopsis thaliana
Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in plant developmental growth, especially in root architecture. The similarity in both chemical structure and biosynthetic pathway suggests a potential linkage between melatonin and auxin signaling. However the molecular mechanism regula...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713329/ https://www.ncbi.nlm.nih.gov/pubmed/31461482 http://dx.doi.org/10.1371/journal.pone.0221687 |
Sumario: | Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in plant developmental growth, especially in root architecture. The similarity in both chemical structure and biosynthetic pathway suggests a potential linkage between melatonin and auxin signaling. However the molecular mechanism regulating this melatonin-mediated root architecture changes is not yet elucidated. In the present study, we re-analyzed previously conducted transcriptome data and identified 16 auxin-related genes whose expression patterns were altered by treatment with melatonin. Several of these genes encoding important auxin transporters or strongly affecting auxin transport were significantly down regulated. In wild type Arabidopsis, Melatonin inhibited both primary root growth and hypocotyl elongation, but enhanced lateral root development in a dose dependent manner. However, the lateral-root-promoting role of melatonin was abolished when each individual null mutant affecting auxin transport including pin5, wag1, tt4 and tt5, was examined. Furthermore, melatonin acts synergistically with auxin to promote lateral root development in wild type Arabidopsis, but such synergistic effects were absent in knockout mutants of individual auxin transport related genes examined. These results strongly suggest that melatonin enhances lateral root development through regulation of auxin distribution via modulation of auxin transport. A working model is proposed to explain how melatonin and auxin act together to promote lateral root development. The present study deepens our understanding of the relationship between melatonin and auxin signaling in plant species. |
---|