Cargando…

Upregulation of eukaryotic translation initiation factor 4E associates with a poor prognosis in gallbladder cancer and promotes cell proliferation in vitro and in vivo

Eukaryotic translation initiation factor 4 (eIF4E) has been demonstrated to promote tumorigenesis in different types of cancer; however, whether eIF4E is involved in the development of GBC is unclear. The present study aimed to explore the biological function of eIF4E in gallbladder cancer (GBC) and...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Debao, Peng, Jing, Wang, Guobing, Zhou, Dachen, Geng, Xiaoping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713416/
https://www.ncbi.nlm.nih.gov/pubmed/31432159
http://dx.doi.org/10.3892/ijmm.2019.4317
Descripción
Sumario:Eukaryotic translation initiation factor 4 (eIF4E) has been demonstrated to promote tumorigenesis in different types of cancer; however, whether eIF4E is involved in the development of GBC is unclear. The present study aimed to explore the biological function of eIF4E in gallbladder cancer (GBC) and identified that the expression level of eIF4E was significantly increased in GBC tissues compared with that in normal gallbladder tissues. The overall survival (OS) was also shorter in the group of patients with GBC with increased eIF4E expression. Increased eIF4E was correlated with advanced stage and higher histologic grade. Knockdown of eIF4E significantly inhibited cell proliferation, colony formation and cell cycle-associated protein expression levels in 2 GBC cell lines. The weight of the tumors in the eIF4E knockdown group was remarkably decreased compared with the control group. It also was revealed that knockdown of eIF4E is associated with upregulating cyclin-dependent kinase inhibitor 1B and down-regulating the expression levels of cyclin E1 and cyclin D1 in vitro and in vivo. These data demonstrated that eIF4E is a novel prognostic marker in GBC and may serve a critical role in the regulation of cell proliferation.