Cargando…
Mitochondrial sub-cellular localization of cAMP-specific phosphodiesterase 8A in ovarian follicular cells
Cyclic adenosine monophosphate (cAMP) is a ubiquitous secondary messenger that plays a central role in endocrine tissue function, particularly in the synthesis of steroid hormones. The intracellular concentration of cAMP is regulated through its synthesis by cyclases and its degradation by cyclic nu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713761/ https://www.ncbi.nlm.nih.gov/pubmed/31462694 http://dx.doi.org/10.1038/s41598-019-48886-8 |
_version_ | 1783446925531414528 |
---|---|
author | Lounas, Amel Vernoux, Nathalie Germain, Marc Tremblay, Marie-Eve Richard, François J. |
author_facet | Lounas, Amel Vernoux, Nathalie Germain, Marc Tremblay, Marie-Eve Richard, François J. |
author_sort | Lounas, Amel |
collection | PubMed |
description | Cyclic adenosine monophosphate (cAMP) is a ubiquitous secondary messenger that plays a central role in endocrine tissue function, particularly in the synthesis of steroid hormones. The intracellular concentration of cAMP is regulated through its synthesis by cyclases and its degradation by cyclic nucleotide phosphodiesterases (PDEs). Although the expression and activity of PDEs impact the specificity and the amplitude of the cAMP response, it is becoming increasingly clear that the sub-cellular localization of PDE emphasizes the spatial regulation of the cell signalling processes that are essential for normal cellular function. We first examined the expression of PDE8A in porcine ovarian cells. PDE8A is expressed in granulosa cells, cumulus cells and oocytes. Second, we assessed the mitochondrial sub-cellular localization of PDE8A. Using western blotting with isolated mitochondrial fractions from granulosa cells and cumulus-oocyte complexes revealed immuno-reactive bands. PDE assay of isolated mitochondrial fractions from granulosa cells measured specific PDE8 cAMP-PDE activity as PF-04957325-sensitive. The immune-reactive PDE8A signal and MitoTracker labelling co-localized supporting mitochondrial sub-cellular localization of PDE8A, which was confirmed using immuno-electron microscopy. Finally, the effect of PDE8 on progesterone production was assessed during the in-vitro maturation of cumulus-oocyte complexes. Using PF-04957325, we observed a significant increase (P < 0.05) in progesterone secretion with follicle-stimulating hormone (FSH). Active mitochondria stained with MitoTracker orange CMTMRos were also increased by the specific PDE8 inhibitor supporting its functional regulation. In conclusion, we propose the occurrence of mitochondrial sub-cellular localization of PDE8A in porcine granulosa cells and cumulus cells. This suggests that there is potential for new strategies for ovarian stimulation and artificial reproductive technologies, as well as the possibility for using new media to improve the quality of oocytes. |
format | Online Article Text |
id | pubmed-6713761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-67137612019-09-13 Mitochondrial sub-cellular localization of cAMP-specific phosphodiesterase 8A in ovarian follicular cells Lounas, Amel Vernoux, Nathalie Germain, Marc Tremblay, Marie-Eve Richard, François J. Sci Rep Article Cyclic adenosine monophosphate (cAMP) is a ubiquitous secondary messenger that plays a central role in endocrine tissue function, particularly in the synthesis of steroid hormones. The intracellular concentration of cAMP is regulated through its synthesis by cyclases and its degradation by cyclic nucleotide phosphodiesterases (PDEs). Although the expression and activity of PDEs impact the specificity and the amplitude of the cAMP response, it is becoming increasingly clear that the sub-cellular localization of PDE emphasizes the spatial regulation of the cell signalling processes that are essential for normal cellular function. We first examined the expression of PDE8A in porcine ovarian cells. PDE8A is expressed in granulosa cells, cumulus cells and oocytes. Second, we assessed the mitochondrial sub-cellular localization of PDE8A. Using western blotting with isolated mitochondrial fractions from granulosa cells and cumulus-oocyte complexes revealed immuno-reactive bands. PDE assay of isolated mitochondrial fractions from granulosa cells measured specific PDE8 cAMP-PDE activity as PF-04957325-sensitive. The immune-reactive PDE8A signal and MitoTracker labelling co-localized supporting mitochondrial sub-cellular localization of PDE8A, which was confirmed using immuno-electron microscopy. Finally, the effect of PDE8 on progesterone production was assessed during the in-vitro maturation of cumulus-oocyte complexes. Using PF-04957325, we observed a significant increase (P < 0.05) in progesterone secretion with follicle-stimulating hormone (FSH). Active mitochondria stained with MitoTracker orange CMTMRos were also increased by the specific PDE8 inhibitor supporting its functional regulation. In conclusion, we propose the occurrence of mitochondrial sub-cellular localization of PDE8A in porcine granulosa cells and cumulus cells. This suggests that there is potential for new strategies for ovarian stimulation and artificial reproductive technologies, as well as the possibility for using new media to improve the quality of oocytes. Nature Publishing Group UK 2019-08-28 /pmc/articles/PMC6713761/ /pubmed/31462694 http://dx.doi.org/10.1038/s41598-019-48886-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Lounas, Amel Vernoux, Nathalie Germain, Marc Tremblay, Marie-Eve Richard, François J. Mitochondrial sub-cellular localization of cAMP-specific phosphodiesterase 8A in ovarian follicular cells |
title | Mitochondrial sub-cellular localization of cAMP-specific phosphodiesterase 8A in ovarian follicular cells |
title_full | Mitochondrial sub-cellular localization of cAMP-specific phosphodiesterase 8A in ovarian follicular cells |
title_fullStr | Mitochondrial sub-cellular localization of cAMP-specific phosphodiesterase 8A in ovarian follicular cells |
title_full_unstemmed | Mitochondrial sub-cellular localization of cAMP-specific phosphodiesterase 8A in ovarian follicular cells |
title_short | Mitochondrial sub-cellular localization of cAMP-specific phosphodiesterase 8A in ovarian follicular cells |
title_sort | mitochondrial sub-cellular localization of camp-specific phosphodiesterase 8a in ovarian follicular cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713761/ https://www.ncbi.nlm.nih.gov/pubmed/31462694 http://dx.doi.org/10.1038/s41598-019-48886-8 |
work_keys_str_mv | AT lounasamel mitochondrialsubcellularlocalizationofcampspecificphosphodiesterase8ainovarianfollicularcells AT vernouxnathalie mitochondrialsubcellularlocalizationofcampspecificphosphodiesterase8ainovarianfollicularcells AT germainmarc mitochondrialsubcellularlocalizationofcampspecificphosphodiesterase8ainovarianfollicularcells AT tremblaymarieeve mitochondrialsubcellularlocalizationofcampspecificphosphodiesterase8ainovarianfollicularcells AT richardfrancoisj mitochondrialsubcellularlocalizationofcampspecificphosphodiesterase8ainovarianfollicularcells |