Cargando…
Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold
PURPOSE: Increased bone regeneration has been achieved through the use of stem cells in combination with graft material. However, the survival of transplanted stem cells remains a major concern. The purpose of this study was to evaluate the viability of transplanted mesenchymal stem cells (MSCs) at...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Academy of Periodontology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713805/ https://www.ncbi.nlm.nih.gov/pubmed/31485376 http://dx.doi.org/10.5051/jpis.2019.49.4.258 |
_version_ | 1783446935472963584 |
---|---|
author | Kang, Seung-Hwan Park, Jun-Beom Kim, InSoo Lee, Won Kim, Heesung |
author_facet | Kang, Seung-Hwan Park, Jun-Beom Kim, InSoo Lee, Won Kim, Heesung |
author_sort | Kang, Seung-Hwan |
collection | PubMed |
description | PURPOSE: Increased bone regeneration has been achieved through the use of stem cells in combination with graft material. However, the survival of transplanted stem cells remains a major concern. The purpose of this study was to evaluate the viability of transplanted mesenchymal stem cells (MSCs) at an early time point (24 hours) based on the type and form of the scaffold used, including type I collagen membrane and synthetic bone. METHODS: The stem cells were obtained from the periosteum of the otherwise healthy dental patients. Four symmetrical circular defects measuring 6 mm in diameter were made in New Zealand white rabbits using a trephine drill. The defects were grafted with 1) synthetic bone (β-tricalcium phosphate/hydroxyapatite [β-TCP/HA]) and 1×10(5) MSCs, 2) collagen membrane and 1×10(5) MSCs, 3) β-TCP/HA+collagen membrane and 1×10(5) MSCs, or 4) β-TCP/HA, a chipped collagen membrane and 1×10(5) MSCs. Cellular viability and the cell migration rate were analyzed. RESULTS: Cells were easily separated from the collagen membrane, but not from synthetic bone. The number of stem cells attached to synthetic bone in groups 1, 3, and 4 seemed to be similar. Cellular viability in group 2 was significantly higher than in the other groups (P<0.05). The cell migration rate was highest in group 2, but this difference was not statistically significant (P>0.05). CONCLUSIONS: This study showed that stem cells can be applied when a membrane is used as a scaffold under no or minimal pressure. When space maintenance is needed, stem cells can be loaded onto synthetic bone with a chipped membrane to enhance the survival rate. |
format | Online Article Text |
id | pubmed-6713805 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Korean Academy of Periodontology |
record_format | MEDLINE/PubMed |
spelling | pubmed-67138052019-09-04 Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold Kang, Seung-Hwan Park, Jun-Beom Kim, InSoo Lee, Won Kim, Heesung J Periodontal Implant Sci Research Article PURPOSE: Increased bone regeneration has been achieved through the use of stem cells in combination with graft material. However, the survival of transplanted stem cells remains a major concern. The purpose of this study was to evaluate the viability of transplanted mesenchymal stem cells (MSCs) at an early time point (24 hours) based on the type and form of the scaffold used, including type I collagen membrane and synthetic bone. METHODS: The stem cells were obtained from the periosteum of the otherwise healthy dental patients. Four symmetrical circular defects measuring 6 mm in diameter were made in New Zealand white rabbits using a trephine drill. The defects were grafted with 1) synthetic bone (β-tricalcium phosphate/hydroxyapatite [β-TCP/HA]) and 1×10(5) MSCs, 2) collagen membrane and 1×10(5) MSCs, 3) β-TCP/HA+collagen membrane and 1×10(5) MSCs, or 4) β-TCP/HA, a chipped collagen membrane and 1×10(5) MSCs. Cellular viability and the cell migration rate were analyzed. RESULTS: Cells were easily separated from the collagen membrane, but not from synthetic bone. The number of stem cells attached to synthetic bone in groups 1, 3, and 4 seemed to be similar. Cellular viability in group 2 was significantly higher than in the other groups (P<0.05). The cell migration rate was highest in group 2, but this difference was not statistically significant (P>0.05). CONCLUSIONS: This study showed that stem cells can be applied when a membrane is used as a scaffold under no or minimal pressure. When space maintenance is needed, stem cells can be loaded onto synthetic bone with a chipped membrane to enhance the survival rate. Korean Academy of Periodontology 2019-08-09 /pmc/articles/PMC6713805/ /pubmed/31485376 http://dx.doi.org/10.5051/jpis.2019.49.4.258 Text en Copyright © 2019. Korean Academy of Periodontology https://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/). |
spellingShingle | Research Article Kang, Seung-Hwan Park, Jun-Beom Kim, InSoo Lee, Won Kim, Heesung Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold |
title | Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold |
title_full | Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold |
title_fullStr | Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold |
title_full_unstemmed | Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold |
title_short | Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold |
title_sort | assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713805/ https://www.ncbi.nlm.nih.gov/pubmed/31485376 http://dx.doi.org/10.5051/jpis.2019.49.4.258 |
work_keys_str_mv | AT kangseunghwan assessmentofstemcellviabilityintheinitialhealingperiodinrabbitswithacranialbonedefectaccordingtothetypeandformofscaffold AT parkjunbeom assessmentofstemcellviabilityintheinitialhealingperiodinrabbitswithacranialbonedefectaccordingtothetypeandformofscaffold AT kiminsoo assessmentofstemcellviabilityintheinitialhealingperiodinrabbitswithacranialbonedefectaccordingtothetypeandformofscaffold AT leewon assessmentofstemcellviabilityintheinitialhealingperiodinrabbitswithacranialbonedefectaccordingtothetypeandformofscaffold AT kimheesung assessmentofstemcellviabilityintheinitialhealingperiodinrabbitswithacranialbonedefectaccordingtothetypeandformofscaffold |