Cargando…
B7-H3 as a Novel CAR-T Therapeutic Target for Glioblastoma
Glioblastoma (GBM) remains one of the most malignant primary tumors in adults, with a 5-year survival rate less than 10% because of lacking effective treatment. Here, we aimed to explore whether B7-H3 could serve as a novel therapeutic target for GBM in chimeric antigen receptor (CAR) T cell therapy...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713854/ https://www.ncbi.nlm.nih.gov/pubmed/31485480 http://dx.doi.org/10.1016/j.omto.2019.07.002 |
Sumario: | Glioblastoma (GBM) remains one of the most malignant primary tumors in adults, with a 5-year survival rate less than 10% because of lacking effective treatment. Here, we aimed to explore whether B7-H3 could serve as a novel therapeutic target for GBM in chimeric antigen receptor (CAR) T cell therapy. In this study, a CAR targeting B7-H3 was constructed and transduced into T cells by lentivirus. Antitumor effects of B7-H3-specific CAR-T cells were assessed with primary and GBM cell lines both in vitro and in vivo. Our results indicated that B7-H3 was positively stained in most of the clinical glioma samples, and its expression levels were correlated to the malignancy grade and poor survival in both low-grade glioma (LGG) and GBM patients. Specific antitumor functions of CAR-T cells were confirmed by cytotoxic and ELISA assay both in primary glioblastoma cells and GBM cell lines. In the orthotropic GBM models, the median survival of the CAR-T-cell-treated group was significantly longer than that of the control group. In conclusion, B7-H3 is frequently overexpressed in GBM patients and may serve as a therapeutic target in CAR-T therapy. |
---|