Cargando…
A Lightweight API-Based Approach for Building Flexible Clinical NLP Systems
Natural language processing (NLP) has become essential for secondary use of clinical data. Over the last two decades, many clinical NLP systems were developed in both academia and industry. However, nearly all existing systems are restricted to specific clinical settings mainly because they were dev...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714318/ https://www.ncbi.nlm.nih.gov/pubmed/31511785 http://dx.doi.org/10.1155/2019/3435609 |
_version_ | 1783447040681836544 |
---|---|
author | Shen, Zhengru van Krimpen, Hugo Spruit, Marco |
author_facet | Shen, Zhengru van Krimpen, Hugo Spruit, Marco |
author_sort | Shen, Zhengru |
collection | PubMed |
description | Natural language processing (NLP) has become essential for secondary use of clinical data. Over the last two decades, many clinical NLP systems were developed in both academia and industry. However, nearly all existing systems are restricted to specific clinical settings mainly because they were developed for and tested with specific datasets, and they often fail to scale up. Therefore, using existing NLP systems for one's own clinical purposes requires substantial resources and long-term time commitments for customization and testing. Moreover, the maintenance is also troublesome and time-consuming. This research presents a lightweight approach for building clinical NLP systems with limited resources. Following the design science research approach, we propose a lightweight architecture which is designed to be composable, extensible, and configurable. It takes NLP as an external component which can be accessed independently and orchestrated in a pipeline via web APIs. To validate its feasibility, we developed a web-based prototype for clinical concept extraction with six well-known NLP APIs and evaluated it on three clinical datasets. In comparison with available benchmarks for the datasets, three high F1 scores (0.861, 0.724, and 0.805) were obtained from the evaluation. It also gained a low F1 score (0.373) on one of the tests, which probably is due to the small size of the test dataset. The development and evaluation of the prototype demonstrates that our approach has a great potential for building effective clinical NLP systems with limited resources. |
format | Online Article Text |
id | pubmed-6714318 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-67143182019-09-11 A Lightweight API-Based Approach for Building Flexible Clinical NLP Systems Shen, Zhengru van Krimpen, Hugo Spruit, Marco J Healthc Eng Research Article Natural language processing (NLP) has become essential for secondary use of clinical data. Over the last two decades, many clinical NLP systems were developed in both academia and industry. However, nearly all existing systems are restricted to specific clinical settings mainly because they were developed for and tested with specific datasets, and they often fail to scale up. Therefore, using existing NLP systems for one's own clinical purposes requires substantial resources and long-term time commitments for customization and testing. Moreover, the maintenance is also troublesome and time-consuming. This research presents a lightweight approach for building clinical NLP systems with limited resources. Following the design science research approach, we propose a lightweight architecture which is designed to be composable, extensible, and configurable. It takes NLP as an external component which can be accessed independently and orchestrated in a pipeline via web APIs. To validate its feasibility, we developed a web-based prototype for clinical concept extraction with six well-known NLP APIs and evaluated it on three clinical datasets. In comparison with available benchmarks for the datasets, three high F1 scores (0.861, 0.724, and 0.805) were obtained from the evaluation. It also gained a low F1 score (0.373) on one of the tests, which probably is due to the small size of the test dataset. The development and evaluation of the prototype demonstrates that our approach has a great potential for building effective clinical NLP systems with limited resources. Hindawi 2019-08-15 /pmc/articles/PMC6714318/ /pubmed/31511785 http://dx.doi.org/10.1155/2019/3435609 Text en Copyright © 2019 Zhengru Shen et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Shen, Zhengru van Krimpen, Hugo Spruit, Marco A Lightweight API-Based Approach for Building Flexible Clinical NLP Systems |
title | A Lightweight API-Based Approach for Building Flexible Clinical NLP Systems |
title_full | A Lightweight API-Based Approach for Building Flexible Clinical NLP Systems |
title_fullStr | A Lightweight API-Based Approach for Building Flexible Clinical NLP Systems |
title_full_unstemmed | A Lightweight API-Based Approach for Building Flexible Clinical NLP Systems |
title_short | A Lightweight API-Based Approach for Building Flexible Clinical NLP Systems |
title_sort | lightweight api-based approach for building flexible clinical nlp systems |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714318/ https://www.ncbi.nlm.nih.gov/pubmed/31511785 http://dx.doi.org/10.1155/2019/3435609 |
work_keys_str_mv | AT shenzhengru alightweightapibasedapproachforbuildingflexibleclinicalnlpsystems AT vankrimpenhugo alightweightapibasedapproachforbuildingflexibleclinicalnlpsystems AT spruitmarco alightweightapibasedapproachforbuildingflexibleclinicalnlpsystems AT shenzhengru lightweightapibasedapproachforbuildingflexibleclinicalnlpsystems AT vankrimpenhugo lightweightapibasedapproachforbuildingflexibleclinicalnlpsystems AT spruitmarco lightweightapibasedapproachforbuildingflexibleclinicalnlpsystems |