Cargando…
Designing SnO(2) Nanostructure-Based Sensors with Tailored Selectivity toward Propanol and Ethanol Vapors
[Image: see text] The application of metal oxide-based sensors for the detection of volatile organic compounds is restricted because of their high operating temperatures and poor gas sensing selectivity. Driven by this fact, we report the low operating temperature and high performance of C(3)H(7)OH...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714541/ https://www.ncbi.nlm.nih.gov/pubmed/31497687 http://dx.doi.org/10.1021/acsomega.9b01079 |
_version_ | 1783447093250097152 |
---|---|
author | Motsoeneng, Rapelang G. Kortidis, Ioannis Ray, Suprakas Sinha Motaung, David E. |
author_facet | Motsoeneng, Rapelang G. Kortidis, Ioannis Ray, Suprakas Sinha Motaung, David E. |
author_sort | Motsoeneng, Rapelang G. |
collection | PubMed |
description | [Image: see text] The application of metal oxide-based sensors for the detection of volatile organic compounds is restricted because of their high operating temperatures and poor gas sensing selectivity. Driven by this fact, we report the low operating temperature and high performance of C(3)H(7)OH and C(2)H(5)OH sensors. The sensors comprising SnO(2) hollow spheres, nanoparticles, nanorods, and fishbones with tunable morphologies were synthesized with a simple hydrothermal one-pot method. The SnO(2) hollow spheres demonstrated the highest sensing response (resistance ratio of 20) toward C(3)H(7)OH at low operating temperatures (75 °C) compared to other tested interference vapors and gases, such as C(3)H(5)O, C(2)H(5)OH, CO, NH(3), CH(4), and NO(2). This improved response can be associated with the higher surface area and intrinsic point defects. At a higher operating temperature of 150 °C, a response of 28 was witnessed for SnO(2) nanorods. A response of 59 was observed for SnO(2) nanoparticle-based sensor toward C(2)H(5)OH at 150 °C. This variation in the optimal temperature with respect to variations in the sensor morphology implies that the vapor selectivity and sensitivity are morphology-dependent. The relation between the intrinsic sensing performance and vapor selectivity originated from the nonstoichiometry of SnO(2), which resulted in excess oxygen vacancies (V(O)) and higher surface areas. This characteristic played a vital role in the enhancement of the target gas absorptivity and the charge transfer capability of SnO(2) hollow sphere-based sensor. |
format | Online Article Text |
id | pubmed-6714541 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-67145412019-09-06 Designing SnO(2) Nanostructure-Based Sensors with Tailored Selectivity toward Propanol and Ethanol Vapors Motsoeneng, Rapelang G. Kortidis, Ioannis Ray, Suprakas Sinha Motaung, David E. ACS Omega [Image: see text] The application of metal oxide-based sensors for the detection of volatile organic compounds is restricted because of their high operating temperatures and poor gas sensing selectivity. Driven by this fact, we report the low operating temperature and high performance of C(3)H(7)OH and C(2)H(5)OH sensors. The sensors comprising SnO(2) hollow spheres, nanoparticles, nanorods, and fishbones with tunable morphologies were synthesized with a simple hydrothermal one-pot method. The SnO(2) hollow spheres demonstrated the highest sensing response (resistance ratio of 20) toward C(3)H(7)OH at low operating temperatures (75 °C) compared to other tested interference vapors and gases, such as C(3)H(5)O, C(2)H(5)OH, CO, NH(3), CH(4), and NO(2). This improved response can be associated with the higher surface area and intrinsic point defects. At a higher operating temperature of 150 °C, a response of 28 was witnessed for SnO(2) nanorods. A response of 59 was observed for SnO(2) nanoparticle-based sensor toward C(2)H(5)OH at 150 °C. This variation in the optimal temperature with respect to variations in the sensor morphology implies that the vapor selectivity and sensitivity are morphology-dependent. The relation between the intrinsic sensing performance and vapor selectivity originated from the nonstoichiometry of SnO(2), which resulted in excess oxygen vacancies (V(O)) and higher surface areas. This characteristic played a vital role in the enhancement of the target gas absorptivity and the charge transfer capability of SnO(2) hollow sphere-based sensor. American Chemical Society 2019-08-12 /pmc/articles/PMC6714541/ /pubmed/31497687 http://dx.doi.org/10.1021/acsomega.9b01079 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Motsoeneng, Rapelang G. Kortidis, Ioannis Ray, Suprakas Sinha Motaung, David E. Designing SnO(2) Nanostructure-Based Sensors with Tailored Selectivity toward Propanol and Ethanol Vapors |
title | Designing SnO(2) Nanostructure-Based Sensors with Tailored Selectivity toward
Propanol and Ethanol Vapors |
title_full | Designing SnO(2) Nanostructure-Based Sensors with Tailored Selectivity toward
Propanol and Ethanol Vapors |
title_fullStr | Designing SnO(2) Nanostructure-Based Sensors with Tailored Selectivity toward
Propanol and Ethanol Vapors |
title_full_unstemmed | Designing SnO(2) Nanostructure-Based Sensors with Tailored Selectivity toward
Propanol and Ethanol Vapors |
title_short | Designing SnO(2) Nanostructure-Based Sensors with Tailored Selectivity toward
Propanol and Ethanol Vapors |
title_sort | designing sno(2) nanostructure-based sensors with tailored selectivity toward
propanol and ethanol vapors |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714541/ https://www.ncbi.nlm.nih.gov/pubmed/31497687 http://dx.doi.org/10.1021/acsomega.9b01079 |
work_keys_str_mv | AT motsoenengrapelangg designingsno2nanostructurebasedsensorswithtailoredselectivitytowardpropanolandethanolvapors AT kortidisioannis designingsno2nanostructurebasedsensorswithtailoredselectivitytowardpropanolandethanolvapors AT raysuprakassinha designingsno2nanostructurebasedsensorswithtailoredselectivitytowardpropanolandethanolvapors AT motaungdavide designingsno2nanostructurebasedsensorswithtailoredselectivitytowardpropanolandethanolvapors |