Cargando…
Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features
Emotion recognition using electroencephalogram (EEG) signals has attracted significant research attention. However, it is difficult to improve the emotional recognition effect across subjects. In response to this difficulty, in this study, multiple features were extracted for the formation of high-d...
Autores principales: | Yang, Fu, Zhao, Xingcong, Jiang, Wenge, Gao, Pengfei, Liu, Guangyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714862/ https://www.ncbi.nlm.nih.gov/pubmed/31507396 http://dx.doi.org/10.3389/fncom.2019.00053 |
Ejemplares similares
-
Exploring EEG Features in Cross-Subject Emotion Recognition
por: Li, Xiang, et al.
Publicado: (2018) -
Cross-Subject EEG Feature Selection for Emotion Recognition Using Transfer Recursive Feature Elimination
por: Yin, Zhong, et al.
Publicado: (2017) -
EEG Emotion Recognition by Fusion of Multi-Scale Features
por: Du, Xiuli, et al.
Publicado: (2023) -
Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
por: Zuo, Xin, et al.
Publicado: (2022) -
Multi-Feature Input Deep Forest for EEG-Based Emotion Recognition
por: Fang, Yinfeng, et al.
Publicado: (2021)