Cargando…

An experimental approach to the preservation potential of magnetic signatures in anthropogenic fires

Archaeomagnetic and rock-magnetic methods are of great value in the identification of archaeological fire, especially in Palaeolithic sites where evidence is usually scarce, ambiguous or poorly preserved. Although taphonomic processes can significantly modify Palaeolithic combustion structures, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Herrejón Lagunilla, Ángela, Carrancho, Ángel, Villalaín, Juan José, Mallol, Carolina, Hernández, Cristo Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715203/
https://www.ncbi.nlm.nih.gov/pubmed/31465517
http://dx.doi.org/10.1371/journal.pone.0221592
_version_ 1783447196136374272
author Herrejón Lagunilla, Ángela
Carrancho, Ángel
Villalaín, Juan José
Mallol, Carolina
Hernández, Cristo Manuel
author_facet Herrejón Lagunilla, Ángela
Carrancho, Ángel
Villalaín, Juan José
Mallol, Carolina
Hernández, Cristo Manuel
author_sort Herrejón Lagunilla, Ángela
collection PubMed
description Archaeomagnetic and rock-magnetic methods are of great value in the identification of archaeological fire, especially in Palaeolithic sites where evidence is usually scarce, ambiguous or poorly preserved. Although taphonomic processes can significantly modify Palaeolithic combustion structures, the extent to which such processes affect the magnetic record remains unknown. Here we report the results of an archaeomagnetic study involving five, two-to-five-year-old experimental combustion structures in open-air and cave settings. Some of these combustion structures involved post-combustion human actions such as trampling and relighting. Our results show pseudo-single domain (PSD) magnetite as the main magnetic carrier. Wood ash layers of combustion structures are the most magnetic facies followed by thermally altered sediments constituting the combustion substrates. A decreasing magnetic concentration pattern in depth was observed as a function of temperature. Positive correlation was found between good-quality directional data and macroscopically well-preserved combustion structures. Partial thermoremanent magnetization (pTRM) was the main magnetization mechanism identified in the combustion substrate facies. These data coupled with partial thermomagnetic curve experiments show the potential of these methods to estimate maximum temperatures of the last combustion event. Relightings show very good directional results, but they cannot be identified because the time between them is not enough to statistically distinguish directional variations of the local Earth´s magnetic field. The substrate sediment of an intensively trampled combustion structure yielded reliable archaeomagnetic directions. The results are discussed in terms of magnetization preservation potential and the effects of taphonomic processes on the archaeomagnetic record.
format Online
Article
Text
id pubmed-6715203
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-67152032019-09-10 An experimental approach to the preservation potential of magnetic signatures in anthropogenic fires Herrejón Lagunilla, Ángela Carrancho, Ángel Villalaín, Juan José Mallol, Carolina Hernández, Cristo Manuel PLoS One Research Article Archaeomagnetic and rock-magnetic methods are of great value in the identification of archaeological fire, especially in Palaeolithic sites where evidence is usually scarce, ambiguous or poorly preserved. Although taphonomic processes can significantly modify Palaeolithic combustion structures, the extent to which such processes affect the magnetic record remains unknown. Here we report the results of an archaeomagnetic study involving five, two-to-five-year-old experimental combustion structures in open-air and cave settings. Some of these combustion structures involved post-combustion human actions such as trampling and relighting. Our results show pseudo-single domain (PSD) magnetite as the main magnetic carrier. Wood ash layers of combustion structures are the most magnetic facies followed by thermally altered sediments constituting the combustion substrates. A decreasing magnetic concentration pattern in depth was observed as a function of temperature. Positive correlation was found between good-quality directional data and macroscopically well-preserved combustion structures. Partial thermoremanent magnetization (pTRM) was the main magnetization mechanism identified in the combustion substrate facies. These data coupled with partial thermomagnetic curve experiments show the potential of these methods to estimate maximum temperatures of the last combustion event. Relightings show very good directional results, but they cannot be identified because the time between them is not enough to statistically distinguish directional variations of the local Earth´s magnetic field. The substrate sediment of an intensively trampled combustion structure yielded reliable archaeomagnetic directions. The results are discussed in terms of magnetization preservation potential and the effects of taphonomic processes on the archaeomagnetic record. Public Library of Science 2019-08-29 /pmc/articles/PMC6715203/ /pubmed/31465517 http://dx.doi.org/10.1371/journal.pone.0221592 Text en © 2019 Herrejón Lagunilla et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Herrejón Lagunilla, Ángela
Carrancho, Ángel
Villalaín, Juan José
Mallol, Carolina
Hernández, Cristo Manuel
An experimental approach to the preservation potential of magnetic signatures in anthropogenic fires
title An experimental approach to the preservation potential of magnetic signatures in anthropogenic fires
title_full An experimental approach to the preservation potential of magnetic signatures in anthropogenic fires
title_fullStr An experimental approach to the preservation potential of magnetic signatures in anthropogenic fires
title_full_unstemmed An experimental approach to the preservation potential of magnetic signatures in anthropogenic fires
title_short An experimental approach to the preservation potential of magnetic signatures in anthropogenic fires
title_sort experimental approach to the preservation potential of magnetic signatures in anthropogenic fires
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715203/
https://www.ncbi.nlm.nih.gov/pubmed/31465517
http://dx.doi.org/10.1371/journal.pone.0221592
work_keys_str_mv AT herrejonlagunillaangela anexperimentalapproachtothepreservationpotentialofmagneticsignaturesinanthropogenicfires
AT carranchoangel anexperimentalapproachtothepreservationpotentialofmagneticsignaturesinanthropogenicfires
AT villalainjuanjose anexperimentalapproachtothepreservationpotentialofmagneticsignaturesinanthropogenicfires
AT mallolcarolina anexperimentalapproachtothepreservationpotentialofmagneticsignaturesinanthropogenicfires
AT hernandezcristomanuel anexperimentalapproachtothepreservationpotentialofmagneticsignaturesinanthropogenicfires
AT herrejonlagunillaangela experimentalapproachtothepreservationpotentialofmagneticsignaturesinanthropogenicfires
AT carranchoangel experimentalapproachtothepreservationpotentialofmagneticsignaturesinanthropogenicfires
AT villalainjuanjose experimentalapproachtothepreservationpotentialofmagneticsignaturesinanthropogenicfires
AT mallolcarolina experimentalapproachtothepreservationpotentialofmagneticsignaturesinanthropogenicfires
AT hernandezcristomanuel experimentalapproachtothepreservationpotentialofmagneticsignaturesinanthropogenicfires