Cargando…
Homologues of the RNA binding protein RsmA in Pseudomonas syringae pv. tomato DC3000 exhibit distinct binding affinities with non‐coding small RNAs and have distinct roles in virulence
Pseudomonas syringae pv. tomato DC3000 (PstDC3000) contains five RsmA protein homologues. In this study, four were functionally characterized, with a focus on RsmA2, RsmA3 and RsmA4. RNA electrophoretic mobility shift assays demonstrated that RsmA1 and RsmA4 exhibited similar low binding affinities...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715622/ https://www.ncbi.nlm.nih.gov/pubmed/31218814 http://dx.doi.org/10.1111/mpp.12823 |
_version_ | 1783447244625674240 |
---|---|
author | Ge, Yixin Lee, Jae Hoon Liu, Jun Yang, Ho‐wen Tian, Yanli Hu, Baishi Zhao, Youfu |
author_facet | Ge, Yixin Lee, Jae Hoon Liu, Jun Yang, Ho‐wen Tian, Yanli Hu, Baishi Zhao, Youfu |
author_sort | Ge, Yixin |
collection | PubMed |
description | Pseudomonas syringae pv. tomato DC3000 (PstDC3000) contains five RsmA protein homologues. In this study, four were functionally characterized, with a focus on RsmA2, RsmA3 and RsmA4. RNA electrophoretic mobility shift assays demonstrated that RsmA1 and RsmA4 exhibited similar low binding affinities to non‐coding small RNAs (ncsRNAs), whereas RsmA2 and RsmA3 exhibited similar, but much higher, binding affinities to ncsRNAs. Our results showed that both RsmA2 and RsmA3 were required for disease symptom development and bacterial growth in planta by significantly affecting virulence gene expression. All four RsmA proteins, especially RsmA2 and RsmA3, influenced γ‐amino butyric acid utilization and pyoverdine production to some degree, whereas RsmA2, RsmA3 and RsmA4 influenced protease activities. A single RsmA, RsmA3, played a dominant role in regulating motility. Furthermore, reverse transcription quantitative real‐time PCR and western blot results showed that RsmA proteins, especially RsmA2 and RsmA3, regulated target genes and possibly other RsmA proteins at both transcriptional and translational levels. These results indicate that RsmA proteins in PstDC3000 exhibit distinct binding affinities to ncsRNAs and have distinct roles in virulence. Our results also suggest that RsmA proteins in PstDC3000 interact with each other, where RsmA2 and RsmA3 play a major role in regulating various functions in a complex manner. |
format | Online Article Text |
id | pubmed-6715622 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67156222019-09-16 Homologues of the RNA binding protein RsmA in Pseudomonas syringae pv. tomato DC3000 exhibit distinct binding affinities with non‐coding small RNAs and have distinct roles in virulence Ge, Yixin Lee, Jae Hoon Liu, Jun Yang, Ho‐wen Tian, Yanli Hu, Baishi Zhao, Youfu Mol Plant Pathol Original Articles Pseudomonas syringae pv. tomato DC3000 (PstDC3000) contains five RsmA protein homologues. In this study, four were functionally characterized, with a focus on RsmA2, RsmA3 and RsmA4. RNA electrophoretic mobility shift assays demonstrated that RsmA1 and RsmA4 exhibited similar low binding affinities to non‐coding small RNAs (ncsRNAs), whereas RsmA2 and RsmA3 exhibited similar, but much higher, binding affinities to ncsRNAs. Our results showed that both RsmA2 and RsmA3 were required for disease symptom development and bacterial growth in planta by significantly affecting virulence gene expression. All four RsmA proteins, especially RsmA2 and RsmA3, influenced γ‐amino butyric acid utilization and pyoverdine production to some degree, whereas RsmA2, RsmA3 and RsmA4 influenced protease activities. A single RsmA, RsmA3, played a dominant role in regulating motility. Furthermore, reverse transcription quantitative real‐time PCR and western blot results showed that RsmA proteins, especially RsmA2 and RsmA3, regulated target genes and possibly other RsmA proteins at both transcriptional and translational levels. These results indicate that RsmA proteins in PstDC3000 exhibit distinct binding affinities to ncsRNAs and have distinct roles in virulence. Our results also suggest that RsmA proteins in PstDC3000 interact with each other, where RsmA2 and RsmA3 play a major role in regulating various functions in a complex manner. John Wiley and Sons Inc. 2019-06-20 /pmc/articles/PMC6715622/ /pubmed/31218814 http://dx.doi.org/10.1111/mpp.12823 Text en © 2019 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Ge, Yixin Lee, Jae Hoon Liu, Jun Yang, Ho‐wen Tian, Yanli Hu, Baishi Zhao, Youfu Homologues of the RNA binding protein RsmA in Pseudomonas syringae pv. tomato DC3000 exhibit distinct binding affinities with non‐coding small RNAs and have distinct roles in virulence |
title | Homologues of the RNA binding protein RsmA in Pseudomonas syringae pv. tomato DC3000 exhibit distinct binding affinities with non‐coding small RNAs and have distinct roles in virulence |
title_full | Homologues of the RNA binding protein RsmA in Pseudomonas syringae pv. tomato DC3000 exhibit distinct binding affinities with non‐coding small RNAs and have distinct roles in virulence |
title_fullStr | Homologues of the RNA binding protein RsmA in Pseudomonas syringae pv. tomato DC3000 exhibit distinct binding affinities with non‐coding small RNAs and have distinct roles in virulence |
title_full_unstemmed | Homologues of the RNA binding protein RsmA in Pseudomonas syringae pv. tomato DC3000 exhibit distinct binding affinities with non‐coding small RNAs and have distinct roles in virulence |
title_short | Homologues of the RNA binding protein RsmA in Pseudomonas syringae pv. tomato DC3000 exhibit distinct binding affinities with non‐coding small RNAs and have distinct roles in virulence |
title_sort | homologues of the rna binding protein rsma in pseudomonas syringae pv. tomato dc3000 exhibit distinct binding affinities with non‐coding small rnas and have distinct roles in virulence |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715622/ https://www.ncbi.nlm.nih.gov/pubmed/31218814 http://dx.doi.org/10.1111/mpp.12823 |
work_keys_str_mv | AT geyixin homologuesofthernabindingproteinrsmainpseudomonassyringaepvtomatodc3000exhibitdistinctbindingaffinitieswithnoncodingsmallrnasandhavedistinctrolesinvirulence AT leejaehoon homologuesofthernabindingproteinrsmainpseudomonassyringaepvtomatodc3000exhibitdistinctbindingaffinitieswithnoncodingsmallrnasandhavedistinctrolesinvirulence AT liujun homologuesofthernabindingproteinrsmainpseudomonassyringaepvtomatodc3000exhibitdistinctbindingaffinitieswithnoncodingsmallrnasandhavedistinctrolesinvirulence AT yanghowen homologuesofthernabindingproteinrsmainpseudomonassyringaepvtomatodc3000exhibitdistinctbindingaffinitieswithnoncodingsmallrnasandhavedistinctrolesinvirulence AT tianyanli homologuesofthernabindingproteinrsmainpseudomonassyringaepvtomatodc3000exhibitdistinctbindingaffinitieswithnoncodingsmallrnasandhavedistinctrolesinvirulence AT hubaishi homologuesofthernabindingproteinrsmainpseudomonassyringaepvtomatodc3000exhibitdistinctbindingaffinitieswithnoncodingsmallrnasandhavedistinctrolesinvirulence AT zhaoyoufu homologuesofthernabindingproteinrsmainpseudomonassyringaepvtomatodc3000exhibitdistinctbindingaffinitieswithnoncodingsmallrnasandhavedistinctrolesinvirulence |