Cargando…

Generalized Mohr-Coulomb strain criterion for bulk metallic glasses under complex compressive loading

The Mohr-Coulomb (M-C) stress criterion is widely applied to describe the pressure sensitivity of bulk metallic glasses (BMGs). However, this criterion is incapable of predicting the variation in fracture angles under different loading modes. Moreover, the M-C criterion cannot describe the plastic f...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Li, Wang, Tzu-Chiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715711/
https://www.ncbi.nlm.nih.gov/pubmed/31467352
http://dx.doi.org/10.1038/s41598-019-49085-1
Descripción
Sumario:The Mohr-Coulomb (M-C) stress criterion is widely applied to describe the pressure sensitivity of bulk metallic glasses (BMGs). However, this criterion is incapable of predicting the variation in fracture angles under different loading modes. Moreover, the M-C criterion cannot describe the plastic fracture of BMGs under compressive loading because the nominal stress of most BMGs remains unchanged after the materials yield. Based on these limitations, we propose a new generalized M-C strain criterion and apply it to analyze the fracture behaviors of two typical Zr-based BMG round bar specimens under complex compressive loading. In this case, the predicted initial yielding stress is in good agreement with the experimental results. The theoretical results can also describe the critical shear strain and fracture angle of BMGs that are associated with the deformation mode.