Cargando…

Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination

Oligodendrocyte precursor cells (OPCs) are abundant in the adult central nervous system, and have the capacity to regenerate oligodendrocytes and myelin. However, in inflammatory diseases such as multiple sclerosis (MS) remyelination is often incomplete. To investigate how neuroinflammation influenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Kirby, Leslie, Jin, Jing, Cardona, Jaime Gonzalez, Smith, Matthew D., Martin, Kyle A., Wang, Jingya, Strasburger, Hayley, Herbst, Leyla, Alexis, Maya, Karnell, Jodi, Davidson, Todd, Dutta, Ranjan, Goverman, Joan, Bergles, Dwight, Calabresi, Peter A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715717/
https://www.ncbi.nlm.nih.gov/pubmed/31467299
http://dx.doi.org/10.1038/s41467-019-11638-3
Descripción
Sumario:Oligodendrocyte precursor cells (OPCs) are abundant in the adult central nervous system, and have the capacity to regenerate oligodendrocytes and myelin. However, in inflammatory diseases such as multiple sclerosis (MS) remyelination is often incomplete. To investigate how neuroinflammation influences OPCs, we perform in vivo fate-tracing in an inflammatory demyelinating mouse model. Here we report that OPC differentiation is inhibited by both effector T cells and IFNγ overexpression by astrocytes. IFNγ also reduces the absolute number of OPCs and alters remaining OPCs by inducing the immunoproteasome and MHC class I. In vitro, OPCs exposed to IFNγ cross-present antigen to cytotoxic CD8 T cells, resulting in OPC death. In human demyelinated MS brain lesions, but not normal appearing white matter, oligodendroglia exhibit enhanced expression of the immunoproteasome subunit PSMB8. Therefore, OPCs may be co-opted by the immune system in MS to perpetuate the autoimmune response, suggesting that inhibiting immune activation of OPCs may facilitate remyelination.