Cargando…
Deep Machine Learning Techniques for the Detection and Classification of Sperm Whale Bioacoustics
We implemented Machine Learning (ML) techniques to advance the study of sperm whale (Physeter macrocephalus) bioacoustics. This entailed employing Convolutional Neural Networks (CNNs) to construct an echolocation click detector designed to classify spectrograms generated from sperm whale acoustic da...
Autores principales: | Bermant, Peter C., Bronstein, Michael M., Wood, Robert J., Gero, Shane, Gruber, David F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715799/ https://www.ncbi.nlm.nih.gov/pubmed/31467331 http://dx.doi.org/10.1038/s41598-019-48909-4 |
Ejemplares similares
-
Publisher Correction: Deep Machine Learning Techniques for the Detection and Classification of Sperm Whale Bioacoustics
por: Bermant, Peter C., et al.
Publicado: (2019) -
BioCPPNet: automatic bioacoustic source separation with deep neural networks
por: Bermant, Peter C.
Publicado: (2021) -
Toward understanding the communication in sperm whales
por: Andreas, Jacob, et al.
Publicado: (2022) -
Critical Decline of the Eastern Caribbean Sperm Whale Population
por: Gero, Shane, et al.
Publicado: (2016) -
Cultural turnover among Galápagos sperm whales
por: Cantor, Mauricio, et al.
Publicado: (2016)