Cargando…
Predicting sediment and nutrient concentrations from high-frequency water-quality data
Water-quality monitoring in rivers often focuses on the concentrations of sediments and nutrients, constituents that can smother biota and cause eutrophication. However, the physical and economic constraints of manual sampling prohibit data collection at the frequency required to adequately capture...
Autores principales: | Leigh, Catherine, Kandanaarachchi, Sevvandi, McGree, James M., Hyndman, Rob J., Alsibai, Omar, Mengersen, Kerrie, Peterson, Erin E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716630/ https://www.ncbi.nlm.nih.gov/pubmed/31469846 http://dx.doi.org/10.1371/journal.pone.0215503 |
Ejemplares similares
-
Understanding links between water-quality variables and nitrate concentration in freshwater streams using high frequency sensor data
por: Kermorvant, Claire, et al.
Publicado: (2023) -
Reconstructing Missing and Anomalous Data Collected from High-Frequency In-Situ Sensors in Fresh Waters
por: Kermorvant, Claire, et al.
Publicado: (2021) -
Early classification of spatio-temporal events using partial information
por: Kandanaarachchi, Sevvandi, et al.
Publicado: (2020) -
The Impact of Spatial Scales and Spatial Smoothing on the Outcome of Bayesian Spatial Model
por: Kang, Su Yun, et al.
Publicado: (2013) -
Modelling survival data to account for model uncertainty: a single model or model averaging?
por: Thamrin, Sri Astuti, et al.
Publicado: (2013)