Cargando…
Identification of modules and functional analysis in CRC subtypes by integrated bioinformatics analysis
Colorectal cancer is one of the top three causes of cancer-related mortality globally, but no predictive molecular biomarkers are currently available for identifying the disease stage of colorectal cancer patients. Common molecular patterns in the disease, beyond superficial manifestations, can be s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716647/ https://www.ncbi.nlm.nih.gov/pubmed/31469863 http://dx.doi.org/10.1371/journal.pone.0221772 |
_version_ | 1783447410084675584 |
---|---|
author | Chen, Ru Sugiyama, Aiko Seno, Hiroshi Sugimoto, Masahiro |
author_facet | Chen, Ru Sugiyama, Aiko Seno, Hiroshi Sugimoto, Masahiro |
author_sort | Chen, Ru |
collection | PubMed |
description | Colorectal cancer is one of the top three causes of cancer-related mortality globally, but no predictive molecular biomarkers are currently available for identifying the disease stage of colorectal cancer patients. Common molecular patterns in the disease, beyond superficial manifestations, can be significant in determining treatment choices. In this study, we used microarray data from colorectal cancer and adjacent normal tissue from the GEO database. These data were categorized into four consensus molecular subtypes based on distinct gene expression signatures. Weighted gene-based protein–protein interaction network analysis was performed for each subtype. NUSAP1, CD44, and COL4A1 modules were found to be statistically significant and present among all the subtypes and displayed though similar but not identical functional enrichment results. Reference of the characteristics of the subtypes to functional modules is necessary since the latter can stay resistant to platform changes and technique noise when compared with other analyses. The CMS4-mesenchymal group, which currently has a poor prognosis, was examined in the study. It is composed mainly of genes involved in immune and stromal expression, with modules focused on ECM dysregulation and chemokine biological processes. Hub genes detection and its’ mapping into the protein–protein interaction network can be indicative of possible targets against specific modules. This approach identified subtypes using enrichment-oriented analysis in functional modules. Proper annotation of functional analysis of modules from different subtypes of CRC might be directive for finding extra options for treatment targets and guiding clinical routines. |
format | Online Article Text |
id | pubmed-6716647 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-67166472019-09-16 Identification of modules and functional analysis in CRC subtypes by integrated bioinformatics analysis Chen, Ru Sugiyama, Aiko Seno, Hiroshi Sugimoto, Masahiro PLoS One Research Article Colorectal cancer is one of the top three causes of cancer-related mortality globally, but no predictive molecular biomarkers are currently available for identifying the disease stage of colorectal cancer patients. Common molecular patterns in the disease, beyond superficial manifestations, can be significant in determining treatment choices. In this study, we used microarray data from colorectal cancer and adjacent normal tissue from the GEO database. These data were categorized into four consensus molecular subtypes based on distinct gene expression signatures. Weighted gene-based protein–protein interaction network analysis was performed for each subtype. NUSAP1, CD44, and COL4A1 modules were found to be statistically significant and present among all the subtypes and displayed though similar but not identical functional enrichment results. Reference of the characteristics of the subtypes to functional modules is necessary since the latter can stay resistant to platform changes and technique noise when compared with other analyses. The CMS4-mesenchymal group, which currently has a poor prognosis, was examined in the study. It is composed mainly of genes involved in immune and stromal expression, with modules focused on ECM dysregulation and chemokine biological processes. Hub genes detection and its’ mapping into the protein–protein interaction network can be indicative of possible targets against specific modules. This approach identified subtypes using enrichment-oriented analysis in functional modules. Proper annotation of functional analysis of modules from different subtypes of CRC might be directive for finding extra options for treatment targets and guiding clinical routines. Public Library of Science 2019-08-30 /pmc/articles/PMC6716647/ /pubmed/31469863 http://dx.doi.org/10.1371/journal.pone.0221772 Text en © 2019 Chen et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Chen, Ru Sugiyama, Aiko Seno, Hiroshi Sugimoto, Masahiro Identification of modules and functional analysis in CRC subtypes by integrated bioinformatics analysis |
title | Identification of modules and functional analysis in CRC subtypes by integrated bioinformatics analysis |
title_full | Identification of modules and functional analysis in CRC subtypes by integrated bioinformatics analysis |
title_fullStr | Identification of modules and functional analysis in CRC subtypes by integrated bioinformatics analysis |
title_full_unstemmed | Identification of modules and functional analysis in CRC subtypes by integrated bioinformatics analysis |
title_short | Identification of modules and functional analysis in CRC subtypes by integrated bioinformatics analysis |
title_sort | identification of modules and functional analysis in crc subtypes by integrated bioinformatics analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716647/ https://www.ncbi.nlm.nih.gov/pubmed/31469863 http://dx.doi.org/10.1371/journal.pone.0221772 |
work_keys_str_mv | AT chenru identificationofmodulesandfunctionalanalysisincrcsubtypesbyintegratedbioinformaticsanalysis AT sugiyamaaiko identificationofmodulesandfunctionalanalysisincrcsubtypesbyintegratedbioinformaticsanalysis AT senohiroshi identificationofmodulesandfunctionalanalysisincrcsubtypesbyintegratedbioinformaticsanalysis AT sugimotomasahiro identificationofmodulesandfunctionalanalysisincrcsubtypesbyintegratedbioinformaticsanalysis |