Cargando…

Antenatal betamethasone enhanced the detrimental effects of postnatal dexamethasone on hyperoxic lung and brain injuries in newborn rats

PURPOSE: To determine the effects of antenatal betamethasone and/or postnatal dexamethasone administration on hyperoxic lung and brain injuries in newborn rats. METHODS: Newborn Sprague-Dawley rats were divided into five experimental groups: normoxia-vehicle-vehicle group, hyperoxia-vehicle-vehicle...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Young Eun, Park, Won Soon, Sung, Dong Kyung, Ahn, So Yoon, Chang, Yun Sil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716665/
https://www.ncbi.nlm.nih.gov/pubmed/31469886
http://dx.doi.org/10.1371/journal.pone.0221847
Descripción
Sumario:PURPOSE: To determine the effects of antenatal betamethasone and/or postnatal dexamethasone administration on hyperoxic lung and brain injuries in newborn rats. METHODS: Newborn Sprague-Dawley rats were divided into five experimental groups: normoxia-vehicle-vehicle group, hyperoxia-vehicle-vehicle group, hyperoxia-betamethasone-vehicle group, hyperoxia-vehicle-dexamethasone group, and hyperoxia-betamethasone-dexamethasone group according to (i) whether rats were exposed to normoxia or hyperoxia after birth to postnatal day (P) 14, (ii) whether antenatal betamethasone (0.2mg/kg) or vehicle was administered to pregnant rats at gestation days 19 and 20, and (iii) whether three tapering doses of dexamethasone (0.5, 0.3, 0.1mg/kg per day) or vehicle were administered on P5, 6 and 7, respectively. The lungs and brains were harvested for histological and biochemical analyses at P8 and P14. RESULTS: Postnatal dexamethasone but not antenatal betamethasone significantly enhanced hyperoxia-induced reduction in body weight gain and alveolarization and increased lung terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells both at P8 and P14, transiently increased hyperoxia-induced reductions in brain weight gain and angiogenesis, and increase in brain TUNEL-positive cells at P8 but not at P14. Co-administration of antenatal betamethasone significantly enhanced dexamethasone-induced impairments in alveolarization both at P8 and P14, transient increases in lung and brain oxidative stresses, and increases in brain TUNEL-positive cells at P8 but not at P14. CONCLUSION: Although postnatal dexamethasone but not antenatal betamethasone alone significantly increased hyperoxic lung and brain injuries, co-administration of antenatal betamethasone significantly enhanced the detrimental effects of postnatal dexamethasone on hyperoxic lung and brain injuries in newborn rats.