Cargando…
Learning to synchronize: How biological agents can couple neural task modules for dealing with the stability-plasticity dilemma
We provide a novel computational framework on how biological and artificial agents can learn to flexibly couple and decouple neural task modules for cognitive processing. In this way, they can address the stability-plasticity dilemma. For this purpose, we combine two prominent computational neurosci...
Autores principales: | Verbeke, Pieter, Verguts, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716678/ https://www.ncbi.nlm.nih.gov/pubmed/31430280 http://dx.doi.org/10.1371/journal.pcbi.1006604 |
Ejemplares similares
-
Dealing with the delirium dilemma
por: Polderman, Kees H, et al.
Publicado: (2005) -
Computational Investigations of Learning and Synchronization in Cognitive Control
por: Huycke, Pieter, et al.
Publicado: (2022) -
The influence of the noradrenergic system on optimal control of neural plasticity
por: Silvetti, Massimo, et al.
Publicado: (2013) -
Time-Based Binding as a Solution to and a Limitation for Flexible Cognition
por: Senoussi, Mehdi, et al.
Publicado: (2022) -
Monoarticular synovitis of knee: dealing with the dilemma
por: Goyal, Tarun, et al.
Publicado: (2020)