Cargando…

Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43(G298S) ALS mouse model

BACKGROUND: In vivo diffusion tensor imaging (DTI) of the mouse brain was used to identify TDP-43 associated alterations in a mouse model for amyotrophic lateral sclerosis (ALS). METHODS: Ten mice with TDP-43(G298S) overexpression under control of the Thy1.2 promoter and 10 wild type (wt) underwent...

Descripción completa

Detalles Bibliográficos
Autores principales: Müller, Hans-Peter, Brenner, David, Roselli, Francesco, Wiesner, Diana, Abaei, Alireza, Gorges, Martin, Danzer, Karin M., Ludolph, Albert C., Tsao, William, Wong, Philip C., Rasche, Volker, Weishaupt, Jochen H., Kassubek, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716821/
https://www.ncbi.nlm.nih.gov/pubmed/31485326
http://dx.doi.org/10.1186/s40035-019-0163-y
_version_ 1783447446706192384
author Müller, Hans-Peter
Brenner, David
Roselli, Francesco
Wiesner, Diana
Abaei, Alireza
Gorges, Martin
Danzer, Karin M.
Ludolph, Albert C.
Tsao, William
Wong, Philip C.
Rasche, Volker
Weishaupt, Jochen H.
Kassubek, Jan
author_facet Müller, Hans-Peter
Brenner, David
Roselli, Francesco
Wiesner, Diana
Abaei, Alireza
Gorges, Martin
Danzer, Karin M.
Ludolph, Albert C.
Tsao, William
Wong, Philip C.
Rasche, Volker
Weishaupt, Jochen H.
Kassubek, Jan
author_sort Müller, Hans-Peter
collection PubMed
description BACKGROUND: In vivo diffusion tensor imaging (DTI) of the mouse brain was used to identify TDP-43 associated alterations in a mouse model for amyotrophic lateral sclerosis (ALS). METHODS: Ten mice with TDP-43(G298S) overexpression under control of the Thy1.2 promoter and 10 wild type (wt) underwent longitudinal DTI scans at 11.7 T, including one baseline and one follow-up scan with an interval of about 5 months. Whole brain-based spatial statistics (WBSS) of DTI-based parameter maps was used to identify longitudinal alterations of TDP-43(G298S) mice compared to wt at the cohort level. Results were supplemented by tractwise fractional anisotropy statistics (TFAS) and histological evaluation of motor cortex for signs of neuronal loss. RESULTS: Alterations at the cohort level in TDP-43(G298S) mice were observed cross-sectionally and longitudinally in motor areas M1/M2 and in transcallosal fibers but not in the corticospinal tract. Neuronal loss in layer V of motor cortex was detected in TDP-43(G298S) at the later (but not at the earlier) timepoint compared to wt. CONCLUSION: DTI mapping of TDP-43(G298S) mice demonstrated progression in motor areas M1/M2. WBSS and TFAS are useful techniques to localize TDP-43(G298S) associated alterations over time in this ALS mouse model, as a biological marker.
format Online
Article
Text
id pubmed-6716821
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-67168212019-09-04 Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43(G298S) ALS mouse model Müller, Hans-Peter Brenner, David Roselli, Francesco Wiesner, Diana Abaei, Alireza Gorges, Martin Danzer, Karin M. Ludolph, Albert C. Tsao, William Wong, Philip C. Rasche, Volker Weishaupt, Jochen H. Kassubek, Jan Transl Neurodegener Research BACKGROUND: In vivo diffusion tensor imaging (DTI) of the mouse brain was used to identify TDP-43 associated alterations in a mouse model for amyotrophic lateral sclerosis (ALS). METHODS: Ten mice with TDP-43(G298S) overexpression under control of the Thy1.2 promoter and 10 wild type (wt) underwent longitudinal DTI scans at 11.7 T, including one baseline and one follow-up scan with an interval of about 5 months. Whole brain-based spatial statistics (WBSS) of DTI-based parameter maps was used to identify longitudinal alterations of TDP-43(G298S) mice compared to wt at the cohort level. Results were supplemented by tractwise fractional anisotropy statistics (TFAS) and histological evaluation of motor cortex for signs of neuronal loss. RESULTS: Alterations at the cohort level in TDP-43(G298S) mice were observed cross-sectionally and longitudinally in motor areas M1/M2 and in transcallosal fibers but not in the corticospinal tract. Neuronal loss in layer V of motor cortex was detected in TDP-43(G298S) at the later (but not at the earlier) timepoint compared to wt. CONCLUSION: DTI mapping of TDP-43(G298S) mice demonstrated progression in motor areas M1/M2. WBSS and TFAS are useful techniques to localize TDP-43(G298S) associated alterations over time in this ALS mouse model, as a biological marker. BioMed Central 2019-08-30 /pmc/articles/PMC6716821/ /pubmed/31485326 http://dx.doi.org/10.1186/s40035-019-0163-y Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Müller, Hans-Peter
Brenner, David
Roselli, Francesco
Wiesner, Diana
Abaei, Alireza
Gorges, Martin
Danzer, Karin M.
Ludolph, Albert C.
Tsao, William
Wong, Philip C.
Rasche, Volker
Weishaupt, Jochen H.
Kassubek, Jan
Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43(G298S) ALS mouse model
title Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43(G298S) ALS mouse model
title_full Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43(G298S) ALS mouse model
title_fullStr Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43(G298S) ALS mouse model
title_full_unstemmed Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43(G298S) ALS mouse model
title_short Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43(G298S) ALS mouse model
title_sort longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the tdp-43(g298s) als mouse model
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716821/
https://www.ncbi.nlm.nih.gov/pubmed/31485326
http://dx.doi.org/10.1186/s40035-019-0163-y
work_keys_str_mv AT mullerhanspeter longitudinaldiffusiontensormagneticresonanceimaginganalysisatthecohortlevelrevealsdisturbedcorticalandcallosalmicrostructurewithsparedcorticospinaltractinthetdp43g298salsmousemodel
AT brennerdavid longitudinaldiffusiontensormagneticresonanceimaginganalysisatthecohortlevelrevealsdisturbedcorticalandcallosalmicrostructurewithsparedcorticospinaltractinthetdp43g298salsmousemodel
AT rosellifrancesco longitudinaldiffusiontensormagneticresonanceimaginganalysisatthecohortlevelrevealsdisturbedcorticalandcallosalmicrostructurewithsparedcorticospinaltractinthetdp43g298salsmousemodel
AT wiesnerdiana longitudinaldiffusiontensormagneticresonanceimaginganalysisatthecohortlevelrevealsdisturbedcorticalandcallosalmicrostructurewithsparedcorticospinaltractinthetdp43g298salsmousemodel
AT abaeialireza longitudinaldiffusiontensormagneticresonanceimaginganalysisatthecohortlevelrevealsdisturbedcorticalandcallosalmicrostructurewithsparedcorticospinaltractinthetdp43g298salsmousemodel
AT gorgesmartin longitudinaldiffusiontensormagneticresonanceimaginganalysisatthecohortlevelrevealsdisturbedcorticalandcallosalmicrostructurewithsparedcorticospinaltractinthetdp43g298salsmousemodel
AT danzerkarinm longitudinaldiffusiontensormagneticresonanceimaginganalysisatthecohortlevelrevealsdisturbedcorticalandcallosalmicrostructurewithsparedcorticospinaltractinthetdp43g298salsmousemodel
AT ludolphalbertc longitudinaldiffusiontensormagneticresonanceimaginganalysisatthecohortlevelrevealsdisturbedcorticalandcallosalmicrostructurewithsparedcorticospinaltractinthetdp43g298salsmousemodel
AT tsaowilliam longitudinaldiffusiontensormagneticresonanceimaginganalysisatthecohortlevelrevealsdisturbedcorticalandcallosalmicrostructurewithsparedcorticospinaltractinthetdp43g298salsmousemodel
AT wongphilipc longitudinaldiffusiontensormagneticresonanceimaginganalysisatthecohortlevelrevealsdisturbedcorticalandcallosalmicrostructurewithsparedcorticospinaltractinthetdp43g298salsmousemodel
AT raschevolker longitudinaldiffusiontensormagneticresonanceimaginganalysisatthecohortlevelrevealsdisturbedcorticalandcallosalmicrostructurewithsparedcorticospinaltractinthetdp43g298salsmousemodel
AT weishauptjochenh longitudinaldiffusiontensormagneticresonanceimaginganalysisatthecohortlevelrevealsdisturbedcorticalandcallosalmicrostructurewithsparedcorticospinaltractinthetdp43g298salsmousemodel
AT kassubekjan longitudinaldiffusiontensormagneticresonanceimaginganalysisatthecohortlevelrevealsdisturbedcorticalandcallosalmicrostructurewithsparedcorticospinaltractinthetdp43g298salsmousemodel