Cargando…
Stoichioproteomics reveal oxygen usage bias, key proteins and pathways in glioma
BACKGROUND: The five-year survival rate and therapeutic effect of malignant glioma is low. Identification of key/associated proteins and pathways in glioma is necessary for developing effective diagnosis and targeted therapy of glioma. In addition, Glioma involves hypoxia-specific microenvironment,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716898/ https://www.ncbi.nlm.nih.gov/pubmed/31464612 http://dx.doi.org/10.1186/s12920-019-0571-y |
_version_ | 1783447464995454976 |
---|---|
author | Yin, Yongqin Li, Bo Mou, Kejie Khan, Muhammad T. Kaushik, Aman C. Wei, Dongqing Zhang, Yu-Juan |
author_facet | Yin, Yongqin Li, Bo Mou, Kejie Khan, Muhammad T. Kaushik, Aman C. Wei, Dongqing Zhang, Yu-Juan |
author_sort | Yin, Yongqin |
collection | PubMed |
description | BACKGROUND: The five-year survival rate and therapeutic effect of malignant glioma is low. Identification of key/associated proteins and pathways in glioma is necessary for developing effective diagnosis and targeted therapy of glioma. In addition, Glioma involves hypoxia-specific microenvironment, whether hypoxia restriction influences the stoichioproteomic characteristics of expressed proteins is unknown. METHODS: In this study, we analyzed the most comprehensive immunohistochemical data from 12 human glioma samples and 4 normal cell types of cerebral cortex, identified differentially expressed proteins (DEPs), and researched the oxygen contents of DEPs, highly and lowly expressed proteins. Further we located key genes on human genome to determine their locations and enriched them for key functional pathways. RESULTS: Our results showed that although no difference was detected on whole proteome, the average oxygen content of highly expressed proteins is 6.65% higher than that of lowly expressed proteins in glioma. A total of 1480 differentially expressed proteins were identified in glioma, including 226 up regulated proteins and 1254 down regulated proteins. The average oxygen content of up regulated proteins is 2.56% higher than that of down regulated proteins in glioma. The localization of differentially expressed genes on human genome showed that most genes were on chromosome 1 and least on Y. The up regulated proteins were significantly enriched in pathways including cell cycle, pathways in cancer, oocyte meiosis, DNA replication etc. Functional dissection of the up regulated proteins with high oxygen contents showed that 51.28% of the proteins were involved in cell cycle and cyclins. CONCLUSIONS: Element signature of oxygen limitation could not be detected in glioma, just as what happened in plants and microbes. Unsaved use of oxygen by the highly expressed proteins and DEPs were adapted to the fast division of glioma cells. This study can help to reveal the molecular mechanism of glioma, and provide a new approach for studies of cancer-related biomacromolecules. In addition, this study lays a foundation for application of stoichioproteomics in precision medicine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12920-019-0571-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6716898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-67168982019-09-04 Stoichioproteomics reveal oxygen usage bias, key proteins and pathways in glioma Yin, Yongqin Li, Bo Mou, Kejie Khan, Muhammad T. Kaushik, Aman C. Wei, Dongqing Zhang, Yu-Juan BMC Med Genomics Research Article BACKGROUND: The five-year survival rate and therapeutic effect of malignant glioma is low. Identification of key/associated proteins and pathways in glioma is necessary for developing effective diagnosis and targeted therapy of glioma. In addition, Glioma involves hypoxia-specific microenvironment, whether hypoxia restriction influences the stoichioproteomic characteristics of expressed proteins is unknown. METHODS: In this study, we analyzed the most comprehensive immunohistochemical data from 12 human glioma samples and 4 normal cell types of cerebral cortex, identified differentially expressed proteins (DEPs), and researched the oxygen contents of DEPs, highly and lowly expressed proteins. Further we located key genes on human genome to determine their locations and enriched them for key functional pathways. RESULTS: Our results showed that although no difference was detected on whole proteome, the average oxygen content of highly expressed proteins is 6.65% higher than that of lowly expressed proteins in glioma. A total of 1480 differentially expressed proteins were identified in glioma, including 226 up regulated proteins and 1254 down regulated proteins. The average oxygen content of up regulated proteins is 2.56% higher than that of down regulated proteins in glioma. The localization of differentially expressed genes on human genome showed that most genes were on chromosome 1 and least on Y. The up regulated proteins were significantly enriched in pathways including cell cycle, pathways in cancer, oocyte meiosis, DNA replication etc. Functional dissection of the up regulated proteins with high oxygen contents showed that 51.28% of the proteins were involved in cell cycle and cyclins. CONCLUSIONS: Element signature of oxygen limitation could not be detected in glioma, just as what happened in plants and microbes. Unsaved use of oxygen by the highly expressed proteins and DEPs were adapted to the fast division of glioma cells. This study can help to reveal the molecular mechanism of glioma, and provide a new approach for studies of cancer-related biomacromolecules. In addition, this study lays a foundation for application of stoichioproteomics in precision medicine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12920-019-0571-y) contains supplementary material, which is available to authorized users. BioMed Central 2019-08-29 /pmc/articles/PMC6716898/ /pubmed/31464612 http://dx.doi.org/10.1186/s12920-019-0571-y Text en © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Yin, Yongqin Li, Bo Mou, Kejie Khan, Muhammad T. Kaushik, Aman C. Wei, Dongqing Zhang, Yu-Juan Stoichioproteomics reveal oxygen usage bias, key proteins and pathways in glioma |
title | Stoichioproteomics reveal oxygen usage bias, key proteins and pathways in glioma |
title_full | Stoichioproteomics reveal oxygen usage bias, key proteins and pathways in glioma |
title_fullStr | Stoichioproteomics reveal oxygen usage bias, key proteins and pathways in glioma |
title_full_unstemmed | Stoichioproteomics reveal oxygen usage bias, key proteins and pathways in glioma |
title_short | Stoichioproteomics reveal oxygen usage bias, key proteins and pathways in glioma |
title_sort | stoichioproteomics reveal oxygen usage bias, key proteins and pathways in glioma |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716898/ https://www.ncbi.nlm.nih.gov/pubmed/31464612 http://dx.doi.org/10.1186/s12920-019-0571-y |
work_keys_str_mv | AT yinyongqin stoichioproteomicsrevealoxygenusagebiaskeyproteinsandpathwaysinglioma AT libo stoichioproteomicsrevealoxygenusagebiaskeyproteinsandpathwaysinglioma AT moukejie stoichioproteomicsrevealoxygenusagebiaskeyproteinsandpathwaysinglioma AT khanmuhammadt stoichioproteomicsrevealoxygenusagebiaskeyproteinsandpathwaysinglioma AT kaushikamanc stoichioproteomicsrevealoxygenusagebiaskeyproteinsandpathwaysinglioma AT weidongqing stoichioproteomicsrevealoxygenusagebiaskeyproteinsandpathwaysinglioma AT zhangyujuan stoichioproteomicsrevealoxygenusagebiaskeyproteinsandpathwaysinglioma |