Cargando…

MiR-29a function as tumor suppressor in cervical cancer by targeting SIRT1 and predict patient prognosis

INTRODUCTION: Cervical cancer is the second most frequently malignant tumors in females and metastasis is a challenge of the treatment of cervical cancer. MiR-29a is usually low expressed in several tumors and its functions in cervical cancer remain unclear. PATIENTS AND METHODS: The quantitative re...

Descripción completa

Detalles Bibliográficos
Autores principales: Nan, Ping, Niu, Yugui, Wang, Xiuhua, Li, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717154/
https://www.ncbi.nlm.nih.gov/pubmed/31692593
http://dx.doi.org/10.2147/OTT.S218043
Descripción
Sumario:INTRODUCTION: Cervical cancer is the second most frequently malignant tumors in females and metastasis is a challenge of the treatment of cervical cancer. MiR-29a is usually low expressed in several tumors and its functions in cervical cancer remain unclear. PATIENTS AND METHODS: The quantitative real-time polymerase chain reaction was employed to assess the expression of miR-29a and the Sirtuin-1 (SIRT1). Cell metastatic ability was assessed using Transwell and Western blot assays. The dual-luciferase reporter assay was performed to verify that miR-29a targeted to the 3’-untranslated region (UTR) of SIRT1 mRNA. RESULTS: MiR-29a was low expressed in cervical cancer and downregulation of miR-29a was associated with poor outcome. MiR-29a regulated the expression of SIRT1 by targeting to its 3’-UTR of mRNA in HeLa cells. SIRT1 was upregulated in cervical cancer tissues and cells in comparison with the non-tumor tissues and normal cells. Upregulation of SIRT1 predicted worse outcome of cervical cancer patients. MiR-29a was participated in the migration, invasion and epithelial–mesenchymal transition (EMT) in cervical cancer through directly targeting to the 3’-UTR of SIRT1 mRNA. SIRT1 reversed partial roles of miR-29a on metastasis in cervical cancer. CONCLUSION: miR-29a suppressed migration, invasion and EMT by directly targeting to SIRT1 in cervical cancer. The newly identified miR-29a/SIRT1 axis provides novel insight into the pathogenesis of cervical cancer.