Cargando…
Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs
OBJECTIVE: To identify the feasibility of using a deep convolutional neural network (DCNN) for the detection and localization of hip fractures on plain frontal pelvic radiographs (PXRs). SUMMARY OF BACKGROUND DATA: Hip fracture is a leading worldwide health problem for the elderly. A missed diagnosi...
Autores principales: | Cheng, Chi-Tung, Ho, Tsung-Ying, Lee, Tao-Yi, Chang, Chih-Chen, Chou, Ching-Cheng, Chen, Chih-Chi, Chung, I-Fang, Liao, Chien-Hung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717182/ https://www.ncbi.nlm.nih.gov/pubmed/30937588 http://dx.doi.org/10.1007/s00330-019-06167-y |
Ejemplares similares
-
Practical applications of deep learning: classifying the most common categories of plain radiographs in a PACS using a neural network
por: Dratsch, Thomas, et al.
Publicado: (2020) -
Predicting the Risk of Total Hip Replacement by Using A Deep Learning Algorithm on Plain Pelvic Radiographs: Diagnostic Study
por: Chen, Chih-Chi, et al.
Publicado: (2023) -
Pneumothorax detection in chest radiographs: optimizing artificial intelligence system for accuracy and confounding bias reduction using in-image annotations in algorithm training
por: Rueckel, Johannes, et al.
Publicado: (2021) -
Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning
por: Lin, Yu-Chun, et al.
Publicado: (2023) -
Pediatric age estimation from radiographs of the knee using deep learning
por: Demircioğlu, Aydin, et al.
Publicado: (2022)