Cargando…
BindSpace decodes transcription factor binding signals by large-scale sequence embedding
Decoding transcription factor (TF) binding signals in genomic DNA is a fundamental problem. Here we present a prediction model called BindSpace that learns to embed DNA sequences and TF class/family labels into the same space. By training on binding data for hundreds of TFs and embedding over 1M DNA...
Autores principales: | Yuan, Han, Kshirsagar, Meghana, Zamparo, Lee, Lu, Yuheng, Leslie, Christina S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717532/ https://www.ncbi.nlm.nih.gov/pubmed/31406384 http://dx.doi.org/10.1038/s41592-019-0511-y |
Ejemplares similares
-
BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
por: Kshirsagar, Meghana, et al.
Publicado: (2022) -
Sequence and chromatin determinants of cell-type–specific transcription factor binding
por: Arvey, Aaron, et al.
Publicado: (2012) -
Large-Scale Turnover of Functional Transcription Factor Binding Sites in Drosophila
por: Moses, Alan M, et al.
Publicado: (2006) -
Learning supervised embeddings for large scale sequence comparisons
por: Kimothi, Dhananjay, et al.
Publicado: (2020) -
Decoding the Inversion Symmetry Underlying Transcription Factor DNA-Binding Specificity and Functionality in the Genome
por: Coons, Laurel A., et al.
Publicado: (2019)