Cargando…
Toward a grey box approach for cardiovascular physiome
The physiomic approach is now widely used in the diagnosis of cardiovascular diseases. There are two possible methods for cardiovascular physiome: the traditional mathematical model and the machine learning (ML) algorithm. ML is used in almost every area of society for various tasks formerly perform...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Physiological Society and The Korean Society of Pharmacology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717786/ https://www.ncbi.nlm.nih.gov/pubmed/31496867 http://dx.doi.org/10.4196/kjpp.2019.23.5.305 |
_version_ | 1783447611217281024 |
---|---|
author | Hwang, Minki Leem, Chae Hun Shim, Eun Bo |
author_facet | Hwang, Minki Leem, Chae Hun Shim, Eun Bo |
author_sort | Hwang, Minki |
collection | PubMed |
description | The physiomic approach is now widely used in the diagnosis of cardiovascular diseases. There are two possible methods for cardiovascular physiome: the traditional mathematical model and the machine learning (ML) algorithm. ML is used in almost every area of society for various tasks formerly performed by humans. Specifically, various ML techniques in cardiovascular medicine are being developed and improved at unprecedented speed. The benefits of using ML for various tasks is that the inner working mechanism of the system does not need to be known, which can prove convenient in situations where determining the inner workings of the system can be difficult. The computation speed is also often higher than that of the traditional mathematical models. The limitations with ML are that it inherently leads to an approximation, and special care must be taken in cases where a high accuracy is required. Traditional mathematical models are, however, constructed based on underlying laws either proven or assumed. The results from the mathematical models are accurate as long as the model is. Combining the advantages of both the mathematical models and ML would increase both the accuracy and efficiency of the simulation for many problems. In this review, examples of cardiovascular physiome where approaches of mathematical modeling and ML can be combined are introduced. |
format | Online Article Text |
id | pubmed-6717786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Korean Physiological Society and The Korean Society of Pharmacology |
record_format | MEDLINE/PubMed |
spelling | pubmed-67177862019-09-06 Toward a grey box approach for cardiovascular physiome Hwang, Minki Leem, Chae Hun Shim, Eun Bo Korean J Physiol Pharmacol Review Article The physiomic approach is now widely used in the diagnosis of cardiovascular diseases. There are two possible methods for cardiovascular physiome: the traditional mathematical model and the machine learning (ML) algorithm. ML is used in almost every area of society for various tasks formerly performed by humans. Specifically, various ML techniques in cardiovascular medicine are being developed and improved at unprecedented speed. The benefits of using ML for various tasks is that the inner working mechanism of the system does not need to be known, which can prove convenient in situations where determining the inner workings of the system can be difficult. The computation speed is also often higher than that of the traditional mathematical models. The limitations with ML are that it inherently leads to an approximation, and special care must be taken in cases where a high accuracy is required. Traditional mathematical models are, however, constructed based on underlying laws either proven or assumed. The results from the mathematical models are accurate as long as the model is. Combining the advantages of both the mathematical models and ML would increase both the accuracy and efficiency of the simulation for many problems. In this review, examples of cardiovascular physiome where approaches of mathematical modeling and ML can be combined are introduced. The Korean Physiological Society and The Korean Society of Pharmacology 2019-09 2019-08-26 /pmc/articles/PMC6717786/ /pubmed/31496867 http://dx.doi.org/10.4196/kjpp.2019.23.5.305 Text en Copyright © Korean J Physiol Pharmacol http://creativecommons.org/licenses/by-nc/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Hwang, Minki Leem, Chae Hun Shim, Eun Bo Toward a grey box approach for cardiovascular physiome |
title | Toward a grey box approach for cardiovascular physiome |
title_full | Toward a grey box approach for cardiovascular physiome |
title_fullStr | Toward a grey box approach for cardiovascular physiome |
title_full_unstemmed | Toward a grey box approach for cardiovascular physiome |
title_short | Toward a grey box approach for cardiovascular physiome |
title_sort | toward a grey box approach for cardiovascular physiome |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717786/ https://www.ncbi.nlm.nih.gov/pubmed/31496867 http://dx.doi.org/10.4196/kjpp.2019.23.5.305 |
work_keys_str_mv | AT hwangminki towardagreyboxapproachforcardiovascularphysiome AT leemchaehun towardagreyboxapproachforcardiovascularphysiome AT shimeunbo towardagreyboxapproachforcardiovascularphysiome |