Cargando…

Imaging of cerebrospinal fluid flow: fundamentals, techniques, and clinical applications of phase-contrast magnetic resonance imaging

Cerebrospinal fluid (CSF) is a dynamic compartment of the brain, constantly circulating through the ventricles and subarachnoid space. In recent years knowledge about CSF has expended due to numerous applications of phase-contrast magnetic resonance imaging (PC-MRI) in CSF flow evaluation, leading t...

Descripción completa

Detalles Bibliográficos
Autores principales: Korbecki, Adrian, Zimny, Anna, Podgórski, Przemysław, Sąsiadek, Marek, Bladowska, Joanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Termedia Publishing House 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717940/
https://www.ncbi.nlm.nih.gov/pubmed/31481996
http://dx.doi.org/10.5114/pjr.2019.86881
Descripción
Sumario:Cerebrospinal fluid (CSF) is a dynamic compartment of the brain, constantly circulating through the ventricles and subarachnoid space. In recent years knowledge about CSF has expended due to numerous applications of phase-contrast magnetic resonance imaging (PC-MRI) in CSF flow evaluation, leading to the revision of former theories and new concepts about pathophysiology of CSF disorders, which are caused either by alterations in CSF production, absorption, or its hydrodynamics. Although alternative non-invasive techniques have emerged in recent years, PC-MRI is still a fundamental sequence that provides both qualitative and quantitative CSF assessment. PC-MRI is widely used to evaluate CSF hydrodynamics in normal pressure hydrocephalus (NPH), Chiari type I malformations (CMI), syringomyelia, and after neurosurgical procedures. In NPH precisely performed PC-MRI provides reliable clinical information useful for differential diagnosis and selection of patients benefiting from surgical operation. Patients with CMI show abnormalities in CSF dynamics within the subarachnoid space, which are pronounced even further if syringomyelia coexists. Another indication for PC-MRI may be assessment of post-surgical CSF flow normalisation. The aim of this review is to highlight the significance of CSF as a multifunctional entity, to outline both the physical and technical background of PC-MRI, and to state current applications of this technique, not only in the diagnosis of central nervous system disorders, but also in the further clinical monitoring and prognosis after treatment.