Cargando…
A dynamic neural network model for predicting risk of Zika in real time
BACKGROUND: In 2015, the Zika virus spread from Brazil throughout the Americas, posing an unprecedented challenge to the public health community. During the epidemic, international public health officials lacked reliable predictions of the outbreak’s expected geographic scale and prevalence of cases...
Autores principales: | Akhtar, Mahmood, Kraemer, Moritz U. G., Gardner, Lauren M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717993/ https://www.ncbi.nlm.nih.gov/pubmed/31474220 http://dx.doi.org/10.1186/s12916-019-1389-3 |
Ejemplares similares
-
Inferring the risk factors behind the geographical spread and transmission of Zika in the Americas
por: Gardner, Lauren M., et al.
Publicado: (2018) -
A review of models applied to the geographic spread of Zika virus
por: Li, Sabrina L, et al.
Publicado: (2021) -
Assessing real-time Zika risk in the United States
por: Castro, Lauren A., et al.
Publicado: (2017) -
Sharing patient-level real-time COVID-19 data
por: Komorowski, Matthieu, et al.
Publicado: (2020) -
A Recurrent Neural-Network-Based Real-Time Dynamic Model for Soft Continuum Manipulators
por: Tariverdi, Abbas, et al.
Publicado: (2021)