Cargando…
Machine Learning-Based Radiomics Predicts Radiotherapeutic Response in Patients With Acromegaly
Background: Prediction of radiotherapeutic response before radiotherapy could help determine individual treatment strategies for patients with acromegaly. Objective: To develop and validate a machine-learning-based multiparametric MRI radiomics model to non-invasively predict radiotherapeutic respon...
Autores principales: | Fan, Yanghua, Jiang, Shenzhong, Hua, Min, Feng, Shanshan, Feng, Ming, Wang, Renzhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718446/ https://www.ncbi.nlm.nih.gov/pubmed/31507537 http://dx.doi.org/10.3389/fendo.2019.00588 |
Ejemplares similares
-
Preoperative Noninvasive Radiomics Approach Predicts Tumor Consistency in Patients With Acromegaly: Development and Multicenter Prospective Validation
por: Fan, Yanghua, et al.
Publicado: (2019) -
Development and Interpretation of Multiple Machine Learning Models for Predicting Postoperative Delayed Remission of Acromegaly Patients During Long-Term Follow-Up
por: Dai, Congxin, et al.
Publicado: (2020) -
Machine Learning in Preoperative Prediction of Postoperative Immediate Remission of Histology-Positive Cushing’s Disease
por: Zhang, Wentai, et al.
Publicado: (2021) -
Machine Learning Based on a Multiparametric and Multiregional Radiomics Signature Predicts Radiotherapeutic Response in Patients with Glioblastoma
por: Pan, Zi-Qi, et al.
Publicado: (2020) -
Exosomal RNAs in the development and treatment of pituitary adenomas
por: Chang, Mengqi, et al.
Publicado: (2023)