Cargando…
Changes in presynaptic calcium signalling accompany age‐related deficits in hippocampal LTP and cognitive impairment
The loss of cognitive function accompanying healthy aging is not associated with extensive or characteristic patterns of cell death, suggesting it is caused by more subtle changes in synaptic properties. In the hippocampal CA1 region, long‐term potentiation requires stronger stimulation for inductio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718530/ https://www.ncbi.nlm.nih.gov/pubmed/31310431 http://dx.doi.org/10.1111/acel.13008 |
_version_ | 1783447737916719104 |
---|---|
author | Pereda, Daniel Al‐Osta, Ibrahim Okorocha, Albert E. Easton, Alexander Hartell, Nicholas A. |
author_facet | Pereda, Daniel Al‐Osta, Ibrahim Okorocha, Albert E. Easton, Alexander Hartell, Nicholas A. |
author_sort | Pereda, Daniel |
collection | PubMed |
description | The loss of cognitive function accompanying healthy aging is not associated with extensive or characteristic patterns of cell death, suggesting it is caused by more subtle changes in synaptic properties. In the hippocampal CA1 region, long‐term potentiation requires stronger stimulation for induction in aged rats and mice and long‐term depression becomes more prevalent. An age‐dependent impairment of postsynaptic calcium homeostasis may underpin these effects. We have examined changes in presynaptic calcium signalling in aged mice using a transgenic mouse line (SyG37) that expresses a genetically encoded calcium sensor in presynaptic terminals. SyG37 mice showed an age‐dependent decline in cognitive abilities in behavioural tasks that require hippocampal processing including the Barnes maze, T‐maze and object location but not recognition tests. The incidence of LTP was significantly impaired in animals over 18 months of age. These effects of aging were accompanied by a persistent increase in resting presynaptic calcium, an increase in the presynaptic calcium signal following Schaffer collateral fibre stimulation, an increase in postsynaptic fEPSP slope and a reduction in paired‐pulse facilitation. These effects were not caused by synapse proliferation and were of presynaptic origin since they were evident in single presynaptic boutons. Aged synapses behaved like younger ones when the extracellular calcium concentration was reduced. Raising extracellular calcium had little effect on aged synapses but altered the properties of young synapses into those of their aged counterparts. These effects can be readily explained by an age‐dependent change in the properties or numbers of presynaptic calcium channels. |
format | Online Article Text |
id | pubmed-6718530 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67185302019-10-01 Changes in presynaptic calcium signalling accompany age‐related deficits in hippocampal LTP and cognitive impairment Pereda, Daniel Al‐Osta, Ibrahim Okorocha, Albert E. Easton, Alexander Hartell, Nicholas A. Aging Cell Original Articles The loss of cognitive function accompanying healthy aging is not associated with extensive or characteristic patterns of cell death, suggesting it is caused by more subtle changes in synaptic properties. In the hippocampal CA1 region, long‐term potentiation requires stronger stimulation for induction in aged rats and mice and long‐term depression becomes more prevalent. An age‐dependent impairment of postsynaptic calcium homeostasis may underpin these effects. We have examined changes in presynaptic calcium signalling in aged mice using a transgenic mouse line (SyG37) that expresses a genetically encoded calcium sensor in presynaptic terminals. SyG37 mice showed an age‐dependent decline in cognitive abilities in behavioural tasks that require hippocampal processing including the Barnes maze, T‐maze and object location but not recognition tests. The incidence of LTP was significantly impaired in animals over 18 months of age. These effects of aging were accompanied by a persistent increase in resting presynaptic calcium, an increase in the presynaptic calcium signal following Schaffer collateral fibre stimulation, an increase in postsynaptic fEPSP slope and a reduction in paired‐pulse facilitation. These effects were not caused by synapse proliferation and were of presynaptic origin since they were evident in single presynaptic boutons. Aged synapses behaved like younger ones when the extracellular calcium concentration was reduced. Raising extracellular calcium had little effect on aged synapses but altered the properties of young synapses into those of their aged counterparts. These effects can be readily explained by an age‐dependent change in the properties or numbers of presynaptic calcium channels. John Wiley and Sons Inc. 2019-07-16 2019-10 /pmc/articles/PMC6718530/ /pubmed/31310431 http://dx.doi.org/10.1111/acel.13008 Text en © 2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Pereda, Daniel Al‐Osta, Ibrahim Okorocha, Albert E. Easton, Alexander Hartell, Nicholas A. Changes in presynaptic calcium signalling accompany age‐related deficits in hippocampal LTP and cognitive impairment |
title | Changes in presynaptic calcium signalling accompany age‐related deficits in hippocampal LTP and cognitive impairment |
title_full | Changes in presynaptic calcium signalling accompany age‐related deficits in hippocampal LTP and cognitive impairment |
title_fullStr | Changes in presynaptic calcium signalling accompany age‐related deficits in hippocampal LTP and cognitive impairment |
title_full_unstemmed | Changes in presynaptic calcium signalling accompany age‐related deficits in hippocampal LTP and cognitive impairment |
title_short | Changes in presynaptic calcium signalling accompany age‐related deficits in hippocampal LTP and cognitive impairment |
title_sort | changes in presynaptic calcium signalling accompany age‐related deficits in hippocampal ltp and cognitive impairment |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718530/ https://www.ncbi.nlm.nih.gov/pubmed/31310431 http://dx.doi.org/10.1111/acel.13008 |
work_keys_str_mv | AT peredadaniel changesinpresynapticcalciumsignallingaccompanyagerelateddeficitsinhippocampalltpandcognitiveimpairment AT alostaibrahim changesinpresynapticcalciumsignallingaccompanyagerelateddeficitsinhippocampalltpandcognitiveimpairment AT okorochaalberte changesinpresynapticcalciumsignallingaccompanyagerelateddeficitsinhippocampalltpandcognitiveimpairment AT eastonalexander changesinpresynapticcalciumsignallingaccompanyagerelateddeficitsinhippocampalltpandcognitiveimpairment AT hartellnicholasa changesinpresynapticcalciumsignallingaccompanyagerelateddeficitsinhippocampalltpandcognitiveimpairment |