Cargando…
Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction
Renal fibrosis is the common pathological feature in a variety of chronic kidney diseases. Aging is highly associated with the progression of renal fibrosis. Among several determinants, mitochondrial dysfunction plays an important role in aging. However, the underlying mechanisms of mitochondrial dy...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718575/ https://www.ncbi.nlm.nih.gov/pubmed/31318148 http://dx.doi.org/10.1111/acel.13004 |
_version_ | 1783447748409819136 |
---|---|
author | Miao, Jinhua Liu, Jiafeng Niu, Jing Zhang, Yunfang Shen, Weiwei Luo, Congwei Liu, Yahong Li, Chuanjiang Li, Hongyan Yang, Peiliang Liu, Youhua Hou, Fan Fan Zhou, Lili |
author_facet | Miao, Jinhua Liu, Jiafeng Niu, Jing Zhang, Yunfang Shen, Weiwei Luo, Congwei Liu, Yahong Li, Chuanjiang Li, Hongyan Yang, Peiliang Liu, Youhua Hou, Fan Fan Zhou, Lili |
author_sort | Miao, Jinhua |
collection | PubMed |
description | Renal fibrosis is the common pathological feature in a variety of chronic kidney diseases. Aging is highly associated with the progression of renal fibrosis. Among several determinants, mitochondrial dysfunction plays an important role in aging. However, the underlying mechanisms of mitochondrial dysfunction in age‐related renal fibrosis are not elucidated. Herein, we found that Wnt/β‐catenin signaling and renin–angiotensin system (RAS) activity were upregulated in aging kidneys. Concomitantly, mitochondrial mass and functions were impaired with aging. Ectopic expression of Klotho, an antagonist of endogenous Wnt/β‐catenin activity, abolished renal fibrosis in d‐galactose (d‐gal)‐induced accelerated aging mouse model and significantly protected renal mitochondrial functions by preserving mass and diminishing the production of reactive oxygen species. In an established aging mouse model, dickkopf 1, a more specific Wnt inhibitor, and the mitochondria‐targeted antioxidant mitoquinone restored mitochondrial mass and attenuated tubular senescence and renal fibrosis. In a human proximal tubular cell line (HKC‐8), ectopic expression of Wnt1 decreased biogenesis and induced dysfunction of mitochondria, and triggered cellular senescence. Moreover, d‐gal triggered the transduction of Wnt/β‐catenin signaling, which further activated angiotensin type 1 receptor (AT1), and then decreased the mitochondrial mass and increased cellular senescence in HKC‐8 cells and primary cultured renal tubular cells. These effects were inhibited by AT1 blocker of losartan. These results suggest inhibition of Wnt/β‐catenin signaling and the RAS could slow the onset of age‐related mitochondrial dysfunction and renal fibrosis. Taken together, our results indicate that Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction. |
format | Online Article Text |
id | pubmed-6718575 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67185752019-10-01 Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction Miao, Jinhua Liu, Jiafeng Niu, Jing Zhang, Yunfang Shen, Weiwei Luo, Congwei Liu, Yahong Li, Chuanjiang Li, Hongyan Yang, Peiliang Liu, Youhua Hou, Fan Fan Zhou, Lili Aging Cell Original Articles Renal fibrosis is the common pathological feature in a variety of chronic kidney diseases. Aging is highly associated with the progression of renal fibrosis. Among several determinants, mitochondrial dysfunction plays an important role in aging. However, the underlying mechanisms of mitochondrial dysfunction in age‐related renal fibrosis are not elucidated. Herein, we found that Wnt/β‐catenin signaling and renin–angiotensin system (RAS) activity were upregulated in aging kidneys. Concomitantly, mitochondrial mass and functions were impaired with aging. Ectopic expression of Klotho, an antagonist of endogenous Wnt/β‐catenin activity, abolished renal fibrosis in d‐galactose (d‐gal)‐induced accelerated aging mouse model and significantly protected renal mitochondrial functions by preserving mass and diminishing the production of reactive oxygen species. In an established aging mouse model, dickkopf 1, a more specific Wnt inhibitor, and the mitochondria‐targeted antioxidant mitoquinone restored mitochondrial mass and attenuated tubular senescence and renal fibrosis. In a human proximal tubular cell line (HKC‐8), ectopic expression of Wnt1 decreased biogenesis and induced dysfunction of mitochondria, and triggered cellular senescence. Moreover, d‐gal triggered the transduction of Wnt/β‐catenin signaling, which further activated angiotensin type 1 receptor (AT1), and then decreased the mitochondrial mass and increased cellular senescence in HKC‐8 cells and primary cultured renal tubular cells. These effects were inhibited by AT1 blocker of losartan. These results suggest inhibition of Wnt/β‐catenin signaling and the RAS could slow the onset of age‐related mitochondrial dysfunction and renal fibrosis. Taken together, our results indicate that Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction. John Wiley and Sons Inc. 2019-07-18 2019-10 /pmc/articles/PMC6718575/ /pubmed/31318148 http://dx.doi.org/10.1111/acel.13004 Text en © 2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Miao, Jinhua Liu, Jiafeng Niu, Jing Zhang, Yunfang Shen, Weiwei Luo, Congwei Liu, Yahong Li, Chuanjiang Li, Hongyan Yang, Peiliang Liu, Youhua Hou, Fan Fan Zhou, Lili Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction |
title | Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction |
title_full | Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction |
title_fullStr | Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction |
title_full_unstemmed | Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction |
title_short | Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction |
title_sort | wnt/β‐catenin/ras signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718575/ https://www.ncbi.nlm.nih.gov/pubmed/31318148 http://dx.doi.org/10.1111/acel.13004 |
work_keys_str_mv | AT miaojinhua wntbcateninrassignalingmediatesagerelatedrenalfibrosisandisassociatedwithmitochondrialdysfunction AT liujiafeng wntbcateninrassignalingmediatesagerelatedrenalfibrosisandisassociatedwithmitochondrialdysfunction AT niujing wntbcateninrassignalingmediatesagerelatedrenalfibrosisandisassociatedwithmitochondrialdysfunction AT zhangyunfang wntbcateninrassignalingmediatesagerelatedrenalfibrosisandisassociatedwithmitochondrialdysfunction AT shenweiwei wntbcateninrassignalingmediatesagerelatedrenalfibrosisandisassociatedwithmitochondrialdysfunction AT luocongwei wntbcateninrassignalingmediatesagerelatedrenalfibrosisandisassociatedwithmitochondrialdysfunction AT liuyahong wntbcateninrassignalingmediatesagerelatedrenalfibrosisandisassociatedwithmitochondrialdysfunction AT lichuanjiang wntbcateninrassignalingmediatesagerelatedrenalfibrosisandisassociatedwithmitochondrialdysfunction AT lihongyan wntbcateninrassignalingmediatesagerelatedrenalfibrosisandisassociatedwithmitochondrialdysfunction AT yangpeiliang wntbcateninrassignalingmediatesagerelatedrenalfibrosisandisassociatedwithmitochondrialdysfunction AT liuyouhua wntbcateninrassignalingmediatesagerelatedrenalfibrosisandisassociatedwithmitochondrialdysfunction AT houfanfan wntbcateninrassignalingmediatesagerelatedrenalfibrosisandisassociatedwithmitochondrialdysfunction AT zhoulili wntbcateninrassignalingmediatesagerelatedrenalfibrosisandisassociatedwithmitochondrialdysfunction |