Cargando…

Topological magnon amplification

Topology is quickly becoming a cornerstone in our understanding of electronic systems. Like their electronic counterparts, bosonic systems can exhibit a topological band structure, but in real materials it is difficult to ascertain their topological nature, as their ground state is a simple condensa...

Descripción completa

Detalles Bibliográficos
Autores principales: Malz, Daniel, Knolle, Johannes, Nunnenkamp, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718654/
https://www.ncbi.nlm.nih.gov/pubmed/31477725
http://dx.doi.org/10.1038/s41467-019-11914-2
Descripción
Sumario:Topology is quickly becoming a cornerstone in our understanding of electronic systems. Like their electronic counterparts, bosonic systems can exhibit a topological band structure, but in real materials it is difficult to ascertain their topological nature, as their ground state is a simple condensate or the vacuum, and one has to rely instead on excited states, for example a characteristic thermal Hall response. Here we propose driving a topological magnon insulator with an electromagnetic field and show that this causes edge mode instabilities and a large non-equilibrium steady-state magnon edge current. Building on this, we discuss several experimental signatures that unambiguously establish the presence of topological magnon edge modes. Furthermore, our amplification mechanism can be employed to power a topological travelling-wave magnon amplifier and topological magnon laser, with applications in magnon spintronics. This work thus represents a step toward functional topological magnetic materials.