Cargando…
Reinforcement Learning With Low-Complexity Liquid State Machines
We propose reinforcement learning on simple networks consisting of random connections of spiking neurons (both recurrent and feed-forward) that can learn complex tasks with very little trainable parameters. Such sparse and randomly interconnected recurrent spiking networks exhibit highly non-linear...
Autores principales: | Ponghiran, Wachirawit, Srinivasan, Gopalakrishnan, Roy, Kaushik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718696/ https://www.ncbi.nlm.nih.gov/pubmed/31507361 http://dx.doi.org/10.3389/fnins.2019.00883 |
Ejemplares similares
-
Analysis of Liquid Ensembles for Enhancing the Performance and Accuracy of Liquid State Machines
por: Wijesinghe, Parami, et al.
Publicado: (2019) -
SpiLinC: Spiking Liquid-Ensemble Computing for Unsupervised Speech and Image Recognition
por: Srinivasan, Gopalakrishnan, et al.
Publicado: (2018) -
BlocTrain: Block-Wise Conditional Training and Inference for Efficient Spike-Based Deep Learning
por: Srinivasan, Gopalakrishnan, et al.
Publicado: (2021) -
ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neuromorphic Computing
por: Srinivasan, Gopalakrishnan, et al.
Publicado: (2019) -
Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning
por: Lee, Chankyu, et al.
Publicado: (2018)