Cargando…
A Multi-parametric MRI-Based Radiomics Signature and a Practical ML Model for Stratifying Glioblastoma Patients Based on Survival Toward Precision Oncology
Purpose: Predicting patients' survival outcomes is recognized of key importance to clinicians in oncology toward determining an ideal course of treatment and patient management. This study applies radiomics analysis on pre-operative multi-parametric MRI of patients with glioblastoma from multip...
Autor principal: | Osman, Alexander F. I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718726/ https://www.ncbi.nlm.nih.gov/pubmed/31507398 http://dx.doi.org/10.3389/fncom.2019.00058 |
Ejemplares similares
-
Synthetic MRI improves radiomics‐based glioblastoma survival prediction
por: Moya‐Sáez, Elisa, et al.
Publicado: (2022) -
Efficient Radiomics-Based Classification of Multi-Parametric MR Images to Identify Volumetric Habitats and Signatures in Glioblastoma: A Machine Learning Approach
por: Chiu, Fang-Ying, et al.
Publicado: (2022) -
Machine-Learning-Based Radiomics MRI Model for Survival Prediction of Recurrent Glioblastomas Treated with Bevacizumab
por: Ammari, Samy, et al.
Publicado: (2021) -
Advanced nasopharyngeal carcinoma: pre-treatment prediction of progression based on multi-parametric MRI radiomics
por: Zhang, Bin, et al.
Publicado: (2017) -
MRI radiomics and potential applications to glioblastoma
por: Hooper, Grayson W., et al.
Publicado: (2023)