Cargando…
Improving Stockline Detection of Radar Sensor Array Systems in Blast Furnaces Using a Novel Encoder–Decoder Architecture
The stockline, which describes the measured depth of the blast furnace (BF) burden surface with time, is significant to the operator executing an optimized charging operation. For the harsh BF environment, noise interferences and aberrant measurements are the main challenges of stockline detection....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719009/ https://www.ncbi.nlm.nih.gov/pubmed/31398946 http://dx.doi.org/10.3390/s19163470 |
Sumario: | The stockline, which describes the measured depth of the blast furnace (BF) burden surface with time, is significant to the operator executing an optimized charging operation. For the harsh BF environment, noise interferences and aberrant measurements are the main challenges of stockline detection. In this paper, a novel encoder–decoder architecture that consists of a convolution neural network (CNN) and a long short-term memory (LSTM) network is proposed, which suppresses the noise interferences, classifies the distorted signals, and regresses the stockline in a learning way. By leveraging the LSTM, we are able to model the longer historical measurements for robust stockline tracking. Compared to traditional hand-crafted denoising processing, the time and efforts could be greatly saved. Experiments are conducted on an actual eight-radar array system in a blast furnace, and the effectiveness of the proposed method is demonstrated on the real recorded data. |
---|