Cargando…
Low-Resolution Models for the Interaction Dynamics of Coated Gold Nanoparticles with β2-microglobulin
A large number of low-resolution models have been proposed in the last decades to reduce the computational cost of molecular dynamics simulations for bio-nano systems, such as those involving the interactions of proteins with functionalized nanoparticles (NPs). For the proteins, “minimalist” models...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719018/ https://www.ncbi.nlm.nih.gov/pubmed/31398866 http://dx.doi.org/10.3390/ijms20163866 |
_version_ | 1783447845062311936 |
---|---|
author | Brancolini, Giorgia Lopez, Hender Corni, Stefano Tozzini, Valentina |
author_facet | Brancolini, Giorgia Lopez, Hender Corni, Stefano Tozzini, Valentina |
author_sort | Brancolini, Giorgia |
collection | PubMed |
description | A large number of low-resolution models have been proposed in the last decades to reduce the computational cost of molecular dynamics simulations for bio-nano systems, such as those involving the interactions of proteins with functionalized nanoparticles (NPs). For the proteins, “minimalist” models at the one-bead-per residue (Cα-based) level and with implicit solvent are well established. For the gold NPs, widely explored for biotechnological applications, mesoscale (MS) models treating the NP core with a single spheroidal object are commonly proposed. In this representation, the surface details (coating, roughness, etc.) are lost. These, however, and the specificity of the functionalization, have been shown to have fundamental roles for the interaction with proteins. We presented a mixed-resolution coarse-grained (CG) model for gold NPs in which the surface chemistry is reintroduced as superficial smaller beads. We compared molecular dynamics simulations of the amyloid β2-microglobulin represented at the minimalist level interacting with NPs represented with this model or at the MS level. Our finding highlights the importance of describing the surface of the NP at a finer level as the chemical-physical properties of the surface of the NP are crucial to correctly understand the protein-nanoparticle association. |
format | Online Article Text |
id | pubmed-6719018 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67190182019-09-10 Low-Resolution Models for the Interaction Dynamics of Coated Gold Nanoparticles with β2-microglobulin Brancolini, Giorgia Lopez, Hender Corni, Stefano Tozzini, Valentina Int J Mol Sci Article A large number of low-resolution models have been proposed in the last decades to reduce the computational cost of molecular dynamics simulations for bio-nano systems, such as those involving the interactions of proteins with functionalized nanoparticles (NPs). For the proteins, “minimalist” models at the one-bead-per residue (Cα-based) level and with implicit solvent are well established. For the gold NPs, widely explored for biotechnological applications, mesoscale (MS) models treating the NP core with a single spheroidal object are commonly proposed. In this representation, the surface details (coating, roughness, etc.) are lost. These, however, and the specificity of the functionalization, have been shown to have fundamental roles for the interaction with proteins. We presented a mixed-resolution coarse-grained (CG) model for gold NPs in which the surface chemistry is reintroduced as superficial smaller beads. We compared molecular dynamics simulations of the amyloid β2-microglobulin represented at the minimalist level interacting with NPs represented with this model or at the MS level. Our finding highlights the importance of describing the surface of the NP at a finer level as the chemical-physical properties of the surface of the NP are crucial to correctly understand the protein-nanoparticle association. MDPI 2019-08-08 /pmc/articles/PMC6719018/ /pubmed/31398866 http://dx.doi.org/10.3390/ijms20163866 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Brancolini, Giorgia Lopez, Hender Corni, Stefano Tozzini, Valentina Low-Resolution Models for the Interaction Dynamics of Coated Gold Nanoparticles with β2-microglobulin |
title | Low-Resolution Models for the Interaction Dynamics of Coated Gold Nanoparticles with β2-microglobulin |
title_full | Low-Resolution Models for the Interaction Dynamics of Coated Gold Nanoparticles with β2-microglobulin |
title_fullStr | Low-Resolution Models for the Interaction Dynamics of Coated Gold Nanoparticles with β2-microglobulin |
title_full_unstemmed | Low-Resolution Models for the Interaction Dynamics of Coated Gold Nanoparticles with β2-microglobulin |
title_short | Low-Resolution Models for the Interaction Dynamics of Coated Gold Nanoparticles with β2-microglobulin |
title_sort | low-resolution models for the interaction dynamics of coated gold nanoparticles with β2-microglobulin |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719018/ https://www.ncbi.nlm.nih.gov/pubmed/31398866 http://dx.doi.org/10.3390/ijms20163866 |
work_keys_str_mv | AT brancolinigiorgia lowresolutionmodelsfortheinteractiondynamicsofcoatedgoldnanoparticleswithb2microglobulin AT lopezhender lowresolutionmodelsfortheinteractiondynamicsofcoatedgoldnanoparticleswithb2microglobulin AT cornistefano lowresolutionmodelsfortheinteractiondynamicsofcoatedgoldnanoparticleswithb2microglobulin AT tozzinivalentina lowresolutionmodelsfortheinteractiondynamicsofcoatedgoldnanoparticleswithb2microglobulin |