Cargando…
Road Environment Semantic Segmentation with Deep Learning from MLS Point Cloud Data
In the near future, the communication between autonomous cars will produce a network of sensors that will allow us to know the state of the roads in real time. Lidar technology, upon which most autonomous cars are based, allows the acquisition of 3D geometric information of the environment. The obje...
Autores principales: | Balado, Jesús, Martínez-Sánchez, Joaquín, Arias, Pedro, Novo, Ana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719035/ https://www.ncbi.nlm.nih.gov/pubmed/31398928 http://dx.doi.org/10.3390/s19163466 |
Ejemplares similares
-
Semantic Point Cloud Segmentation Using Fast Deep Neural Network and DCRF †
por: Rao, Yunbo, et al.
Publicado: (2021) -
Individual Tree Segmentation Method Based on Mobile Backpack LiDAR Point Clouds
por: Comesaña-Cebral, Lino, et al.
Publicado: (2021) -
Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm
por: Yan, Li, et al.
Publicado: (2017) -
Deep Segmentation of Point Clouds of Wheat
por: Ghahremani, Morteza, et al.
Publicado: (2021) -
PSegNet: Simultaneous Semantic and Instance Segmentation for Point Clouds of Plants
por: Li, Dawei, et al.
Publicado: (2022)