Cargando…

Capacitive Sensing of Icing under Vacuum and Cryogenic Temperatures

In certain industrial processes, ice aggregations on surfaces can occur under almost vacuum conditions and at very low to cryogenic temperatures due to residual water molecules. This aggregation can affect the performance of the process and it is therefore of interest to monitor such surfaces. In th...

Descripción completa

Detalles Bibliográficos
Autores principales: Padilha Leitzke, Juliana, Mitterer, Tobias, Zangl, Hubert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719181/
https://www.ncbi.nlm.nih.gov/pubmed/31426374
http://dx.doi.org/10.3390/s19163574
Descripción
Sumario:In certain industrial processes, ice aggregations on surfaces can occur under almost vacuum conditions and at very low to cryogenic temperatures due to residual water molecules. This aggregation can affect the performance of the process and it is therefore of interest to monitor such surfaces. In this paper, we present a capacitive ice measurement system capable to operate in vacuum and temperatures of about [Formula: see text] [Formula: see text] and below. We present a capacitive sensor setup with a separation of sensor element and sensor electronics, such that the sensor electronics can reside outside the cold environment. It is demonstrated that the permittivity of such ice formations at vacuum and low temperatures is sufficient for measurement using the proposed sensor configuration. Results from a long-term study using a prototype further demonstrate the stability of the system and thus the feasibility of the proposed system for long term condition monitoring of surfaces in vacuum that are e.g., cooled by cryogenic liquids. The developed system uses wireless communication in order to allow for simple retrofitting of existing infrastructure even in remote locations.