Cargando…
Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging
INTRODUCTION: Timely diagnosis of behavioral variant frontotemporal dementia (bvFTD) remains challenging because it depends on clinical expertise and potentially ambiguous diagnostic guidelines. Recent recommendations highlight the role of multimodal neuroimaging and machine learning methods as comp...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719282/ https://www.ncbi.nlm.nih.gov/pubmed/31497638 http://dx.doi.org/10.1016/j.dadm.2019.06.002 |
_version_ | 1783447905903837184 |
---|---|
author | Donnelly-Kehoe, Patricio Andres Pascariello, Guido Orlando García, Adolfo M. Hodges, John R. Miller, Bruce Rosen, Howie Manes, Facundo Landin-Romero, Ramon Matallana, Diana Serrano, Cecilia Herrera, Eduar Reyes, Pablo Santamaria-Garcia, Hernando Kumfor, Fiona Piguet, Olivier Ibanez, Agustin Sedeño, Lucas |
author_facet | Donnelly-Kehoe, Patricio Andres Pascariello, Guido Orlando García, Adolfo M. Hodges, John R. Miller, Bruce Rosen, Howie Manes, Facundo Landin-Romero, Ramon Matallana, Diana Serrano, Cecilia Herrera, Eduar Reyes, Pablo Santamaria-Garcia, Hernando Kumfor, Fiona Piguet, Olivier Ibanez, Agustin Sedeño, Lucas |
author_sort | Donnelly-Kehoe, Patricio Andres |
collection | PubMed |
description | INTRODUCTION: Timely diagnosis of behavioral variant frontotemporal dementia (bvFTD) remains challenging because it depends on clinical expertise and potentially ambiguous diagnostic guidelines. Recent recommendations highlight the role of multimodal neuroimaging and machine learning methods as complementary tools to address this problem. METHODS: We developed an automatic, cross-center, multimodal computational approach for robust classification of patients with bvFTD and healthy controls. We analyzed structural magnetic resonance imaging and resting-state functional connectivity from 44 patients with bvFTD and 60 healthy controls (across three imaging centers with different acquisition protocols) using a fully automated processing pipeline, including site normalization, native space feature extraction, and a random forest classifier. RESULTS: Our method successfully combined multimodal imaging information with high accuracy (91%), sensitivity (83.7%), and specificity (96.6%). DISCUSSION: This multimodal approach enhanced the system's performance and provided a clinically informative method for neuroimaging analysis. This underscores the relevance of combining multimodal imaging and machine learning as a gold standard for dementia diagnosis. |
format | Online Article Text |
id | pubmed-6719282 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-67192822019-09-06 Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging Donnelly-Kehoe, Patricio Andres Pascariello, Guido Orlando García, Adolfo M. Hodges, John R. Miller, Bruce Rosen, Howie Manes, Facundo Landin-Romero, Ramon Matallana, Diana Serrano, Cecilia Herrera, Eduar Reyes, Pablo Santamaria-Garcia, Hernando Kumfor, Fiona Piguet, Olivier Ibanez, Agustin Sedeño, Lucas Alzheimers Dement (Amst) Diagnostic Assessment & Prognosis INTRODUCTION: Timely diagnosis of behavioral variant frontotemporal dementia (bvFTD) remains challenging because it depends on clinical expertise and potentially ambiguous diagnostic guidelines. Recent recommendations highlight the role of multimodal neuroimaging and machine learning methods as complementary tools to address this problem. METHODS: We developed an automatic, cross-center, multimodal computational approach for robust classification of patients with bvFTD and healthy controls. We analyzed structural magnetic resonance imaging and resting-state functional connectivity from 44 patients with bvFTD and 60 healthy controls (across three imaging centers with different acquisition protocols) using a fully automated processing pipeline, including site normalization, native space feature extraction, and a random forest classifier. RESULTS: Our method successfully combined multimodal imaging information with high accuracy (91%), sensitivity (83.7%), and specificity (96.6%). DISCUSSION: This multimodal approach enhanced the system's performance and provided a clinically informative method for neuroimaging analysis. This underscores the relevance of combining multimodal imaging and machine learning as a gold standard for dementia diagnosis. Elsevier 2019-08-28 /pmc/articles/PMC6719282/ /pubmed/31497638 http://dx.doi.org/10.1016/j.dadm.2019.06.002 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Diagnostic Assessment & Prognosis Donnelly-Kehoe, Patricio Andres Pascariello, Guido Orlando García, Adolfo M. Hodges, John R. Miller, Bruce Rosen, Howie Manes, Facundo Landin-Romero, Ramon Matallana, Diana Serrano, Cecilia Herrera, Eduar Reyes, Pablo Santamaria-Garcia, Hernando Kumfor, Fiona Piguet, Olivier Ibanez, Agustin Sedeño, Lucas Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging |
title | Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging |
title_full | Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging |
title_fullStr | Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging |
title_full_unstemmed | Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging |
title_short | Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging |
title_sort | robust automated computational approach for classifying frontotemporal neurodegeneration: multimodal/multicenter neuroimaging |
topic | Diagnostic Assessment & Prognosis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719282/ https://www.ncbi.nlm.nih.gov/pubmed/31497638 http://dx.doi.org/10.1016/j.dadm.2019.06.002 |
work_keys_str_mv | AT donnellykehoepatricioandres robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT pascarielloguidoorlando robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT garciaadolfom robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT hodgesjohnr robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT millerbruce robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT rosenhowie robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT manesfacundo robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT landinromeroramon robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT matallanadiana robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT serranocecilia robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT herreraeduar robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT reyespablo robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT santamariagarciahernando robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT kumforfiona robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT piguetolivier robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT ibanezagustin robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging AT sedenolucas robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging |