Cargando…

Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging

INTRODUCTION: Timely diagnosis of behavioral variant frontotemporal dementia (bvFTD) remains challenging because it depends on clinical expertise and potentially ambiguous diagnostic guidelines. Recent recommendations highlight the role of multimodal neuroimaging and machine learning methods as comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Donnelly-Kehoe, Patricio Andres, Pascariello, Guido Orlando, García, Adolfo M., Hodges, John R., Miller, Bruce, Rosen, Howie, Manes, Facundo, Landin-Romero, Ramon, Matallana, Diana, Serrano, Cecilia, Herrera, Eduar, Reyes, Pablo, Santamaria-Garcia, Hernando, Kumfor, Fiona, Piguet, Olivier, Ibanez, Agustin, Sedeño, Lucas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719282/
https://www.ncbi.nlm.nih.gov/pubmed/31497638
http://dx.doi.org/10.1016/j.dadm.2019.06.002
_version_ 1783447905903837184
author Donnelly-Kehoe, Patricio Andres
Pascariello, Guido Orlando
García, Adolfo M.
Hodges, John R.
Miller, Bruce
Rosen, Howie
Manes, Facundo
Landin-Romero, Ramon
Matallana, Diana
Serrano, Cecilia
Herrera, Eduar
Reyes, Pablo
Santamaria-Garcia, Hernando
Kumfor, Fiona
Piguet, Olivier
Ibanez, Agustin
Sedeño, Lucas
author_facet Donnelly-Kehoe, Patricio Andres
Pascariello, Guido Orlando
García, Adolfo M.
Hodges, John R.
Miller, Bruce
Rosen, Howie
Manes, Facundo
Landin-Romero, Ramon
Matallana, Diana
Serrano, Cecilia
Herrera, Eduar
Reyes, Pablo
Santamaria-Garcia, Hernando
Kumfor, Fiona
Piguet, Olivier
Ibanez, Agustin
Sedeño, Lucas
author_sort Donnelly-Kehoe, Patricio Andres
collection PubMed
description INTRODUCTION: Timely diagnosis of behavioral variant frontotemporal dementia (bvFTD) remains challenging because it depends on clinical expertise and potentially ambiguous diagnostic guidelines. Recent recommendations highlight the role of multimodal neuroimaging and machine learning methods as complementary tools to address this problem. METHODS: We developed an automatic, cross-center, multimodal computational approach for robust classification of patients with bvFTD and healthy controls. We analyzed structural magnetic resonance imaging and resting-state functional connectivity from 44 patients with bvFTD and 60 healthy controls (across three imaging centers with different acquisition protocols) using a fully automated processing pipeline, including site normalization, native space feature extraction, and a random forest classifier. RESULTS: Our method successfully combined multimodal imaging information with high accuracy (91%), sensitivity (83.7%), and specificity (96.6%). DISCUSSION: This multimodal approach enhanced the system's performance and provided a clinically informative method for neuroimaging analysis. This underscores the relevance of combining multimodal imaging and machine learning as a gold standard for dementia diagnosis.
format Online
Article
Text
id pubmed-6719282
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-67192822019-09-06 Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging Donnelly-Kehoe, Patricio Andres Pascariello, Guido Orlando García, Adolfo M. Hodges, John R. Miller, Bruce Rosen, Howie Manes, Facundo Landin-Romero, Ramon Matallana, Diana Serrano, Cecilia Herrera, Eduar Reyes, Pablo Santamaria-Garcia, Hernando Kumfor, Fiona Piguet, Olivier Ibanez, Agustin Sedeño, Lucas Alzheimers Dement (Amst) Diagnostic Assessment & Prognosis INTRODUCTION: Timely diagnosis of behavioral variant frontotemporal dementia (bvFTD) remains challenging because it depends on clinical expertise and potentially ambiguous diagnostic guidelines. Recent recommendations highlight the role of multimodal neuroimaging and machine learning methods as complementary tools to address this problem. METHODS: We developed an automatic, cross-center, multimodal computational approach for robust classification of patients with bvFTD and healthy controls. We analyzed structural magnetic resonance imaging and resting-state functional connectivity from 44 patients with bvFTD and 60 healthy controls (across three imaging centers with different acquisition protocols) using a fully automated processing pipeline, including site normalization, native space feature extraction, and a random forest classifier. RESULTS: Our method successfully combined multimodal imaging information with high accuracy (91%), sensitivity (83.7%), and specificity (96.6%). DISCUSSION: This multimodal approach enhanced the system's performance and provided a clinically informative method for neuroimaging analysis. This underscores the relevance of combining multimodal imaging and machine learning as a gold standard for dementia diagnosis. Elsevier 2019-08-28 /pmc/articles/PMC6719282/ /pubmed/31497638 http://dx.doi.org/10.1016/j.dadm.2019.06.002 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Diagnostic Assessment & Prognosis
Donnelly-Kehoe, Patricio Andres
Pascariello, Guido Orlando
García, Adolfo M.
Hodges, John R.
Miller, Bruce
Rosen, Howie
Manes, Facundo
Landin-Romero, Ramon
Matallana, Diana
Serrano, Cecilia
Herrera, Eduar
Reyes, Pablo
Santamaria-Garcia, Hernando
Kumfor, Fiona
Piguet, Olivier
Ibanez, Agustin
Sedeño, Lucas
Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging
title Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging
title_full Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging
title_fullStr Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging
title_full_unstemmed Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging
title_short Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging
title_sort robust automated computational approach for classifying frontotemporal neurodegeneration: multimodal/multicenter neuroimaging
topic Diagnostic Assessment & Prognosis
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719282/
https://www.ncbi.nlm.nih.gov/pubmed/31497638
http://dx.doi.org/10.1016/j.dadm.2019.06.002
work_keys_str_mv AT donnellykehoepatricioandres robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT pascarielloguidoorlando robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT garciaadolfom robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT hodgesjohnr robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT millerbruce robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT rosenhowie robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT manesfacundo robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT landinromeroramon robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT matallanadiana robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT serranocecilia robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT herreraeduar robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT reyespablo robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT santamariagarciahernando robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT kumforfiona robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT piguetolivier robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT ibanezagustin robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging
AT sedenolucas robustautomatedcomputationalapproachforclassifyingfrontotemporalneurodegenerationmultimodalmulticenterneuroimaging