Cargando…
Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging
INTRODUCTION: Timely diagnosis of behavioral variant frontotemporal dementia (bvFTD) remains challenging because it depends on clinical expertise and potentially ambiguous diagnostic guidelines. Recent recommendations highlight the role of multimodal neuroimaging and machine learning methods as comp...
Autores principales: | Donnelly-Kehoe, Patricio Andres, Pascariello, Guido Orlando, García, Adolfo M., Hodges, John R., Miller, Bruce, Rosen, Howie, Manes, Facundo, Landin-Romero, Ramon, Matallana, Diana, Serrano, Cecilia, Herrera, Eduar, Reyes, Pablo, Santamaria-Garcia, Hernando, Kumfor, Fiona, Piguet, Olivier, Ibanez, Agustin, Sedeño, Lucas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719282/ https://www.ncbi.nlm.nih.gov/pubmed/31497638 http://dx.doi.org/10.1016/j.dadm.2019.06.002 |
Ejemplares similares
-
Predicting disease progression in behavioral variant frontotemporal dementia
por: Anderl‐Straub, Sarah, et al.
Publicado: (2021) -
Prognostic value of ATN Alzheimer biomarkers: 60‐month follow‐up results from the Argentine Alzheimer's Disease Neuroimaging Initiative
por: Allegri, Ricardo F., et al.
Publicado: (2020) -
Characterizing heterogeneity in the progression of Alzheimer's disease using longitudinal clinical and neuroimaging biomarkers
por: Goyal, Devendra, et al.
Publicado: (2018) -
Bayesian latent time joint mixed-effects model of progression in the Alzheimer's Disease Neuroimaging Initiative
por: Li, Dan, et al.
Publicado: (2018) -
The influence of culture and cognitive reserve on the clinical presentation of behavioural-variant frontotemporal dementia
por: Skeggs, A., et al.
Publicado: (2023)