Cargando…

Emergence of Three Dimensional Printed Cardiac Tissue: Opportunities and Challenges in Cardiovascular Diseases

Three-dimensional (3D) printing, also known as additive manufacturing, was developed originally for engineering applications. Since its early advancements, there has been a relentless de-velopment in enthusiasm for this innovation in biomedical research. It allows for the fabrication of structures w...

Descripción completa

Detalles Bibliográficos
Autores principales: Charbe, Nitin B., Zacconi, Flavia C., Amnerkar, Nikhil, Pardhi, Dinesh, Shukla, Priyank, Mukattash, Tareq L., McCarron, Paul A., Tambuwala, Murtaza M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Science Publishers 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719392/
https://www.ncbi.nlm.nih.gov/pubmed/30648518
http://dx.doi.org/10.2174/1573403X15666190112154710
Descripción
Sumario:Three-dimensional (3D) printing, also known as additive manufacturing, was developed originally for engineering applications. Since its early advancements, there has been a relentless de-velopment in enthusiasm for this innovation in biomedical research. It allows for the fabrication of structures with both complex geometries and heterogeneous material properties. Tissue engineering using 3D bio-printers can overcome the limitations of traditional tissue engineering methods. It can match the complexity and cellular microenvironment of human organs and tissues, which drives much of the interest in this technique. However, most of the preliminary evaluations of 3D-printed tissues and organ engineering, including cardiac tissue, relies extensively on the lessons learned from tradi-tional tissue engineering. In many early examples, the final printed structures were found to be no bet-ter than tissues developed using traditional tissue engineering methods. This highlights the fact that 3D bio-printing of human tissue is still very much in its infancy and more work needs to be done to realise its full potential. This can be achieved through interdisciplinary collaboration between engi-neers, biomaterial scientists and molecular cell biologists. This review highlights current advance-ments and future prospects for 3D bio-printing in engineering ex vivo cardiac tissue and associated vasculature, such as coronary arteries. In this context, the role of biomaterials for hydrogel matrices and choice of cells are discussed. 3D bio-printing has the potential to advance current research signif-icantly and support the development of novel therapeutics which can improve the therapeutic out-comes of patients suffering fatal cardiovascular pathologies.