Cargando…
Spatiotemporal dynamics of GEF-H1 activation controlled by microtubule- and Src-mediated pathways
Rho family GTPases are activated with precise spatiotemporal control by guanine nucleotide exchange factors (GEFs). Guanine exchange factor H1 (GEF-H1), a RhoA activator, is thought to act as an integrator of microtubule (MT) and actin dynamics in diverse cell functions. Here we identify a GEF-H1 au...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719461/ https://www.ncbi.nlm.nih.gov/pubmed/31420453 http://dx.doi.org/10.1083/jcb.201812073 |
Sumario: | Rho family GTPases are activated with precise spatiotemporal control by guanine nucleotide exchange factors (GEFs). Guanine exchange factor H1 (GEF-H1), a RhoA activator, is thought to act as an integrator of microtubule (MT) and actin dynamics in diverse cell functions. Here we identify a GEF-H1 autoinhibitory sequence and exploit it to produce an activation biosensor to quantitatively probe the relationship between GEF-H1 conformational change, RhoA activity, and edge motion in migrating cells with micrometer- and second-scale resolution. Simultaneous imaging of MT dynamics and GEF-H1 activity revealed that autoinhibited GEF-H1 is localized to MTs, while MT depolymerization subadjacent to the cell cortex promotes GEF-H1 activation in an ~5-µm-wide peripheral band. GEF-H1 is further regulated by Src phosphorylation, activating GEF-H1 in a narrower band ~0–2 µm from the cell edge, in coordination with cell protrusions. This indicates a synergistic intersection between MT dynamics and Src signaling in RhoA activation through GEF-H1. |
---|