Cargando…

Methods for merging data sets in electron cryo-microscopy

Recent developments have resulted in electron cryo-microscopy (cryo-EM) becoming a useful tool for the structure determination of biological macromolecules. For samples containing inherent flexibility, heterogeneity or preferred orientation, the collection of extensive cryo-EM data using several con...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilkinson, Max E., Kumar, Ananthanarayanan, Casañal, Ana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719665/
https://www.ncbi.nlm.nih.gov/pubmed/31478901
http://dx.doi.org/10.1107/S2059798319010519
Descripción
Sumario:Recent developments have resulted in electron cryo-microscopy (cryo-EM) becoming a useful tool for the structure determination of biological macromolecules. For samples containing inherent flexibility, heterogeneity or preferred orientation, the collection of extensive cryo-EM data using several conditions and microscopes is often required. In such a scenario, merging cryo-EM data sets is advantageous because it allows improved three-dimensional reconstructions to be obtained. Since data sets are not always collected with the same pixel size, merging data can be challenging. Here, two methods to combine cryo-EM data are described. Both involve the calculation of a rescaling factor from independent data sets. The effects of errors in the scaling factor on the results of data merging are also estimated. The methods described here provide a guideline for cryo-EM users who wish to combine data sets from the same type of microscope and detector.