Cargando…
Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
A major tenet in theoretical neuroscience is that cognitive and behavioral processes are ultimately implemented in terms of the neural system dynamics. Accordingly, a major aim for the analysis of neurophysiological measurements should lie in the identification of the computational dynamics underlyi...
Autores principales: | Koppe, Georgia, Toutounji, Hazem, Kirsch, Peter, Lis, Stefanie, Durstewitz, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719895/ https://www.ncbi.nlm.nih.gov/pubmed/31433810 http://dx.doi.org/10.1371/journal.pcbi.1007263 |
Ejemplares similares
-
Detecting Multiple Change Points Using Adaptive Regression Splines With Application to Neural Recordings
por: Toutounji, Hazem, et al.
Publicado: (2018) -
Interpretable Recurrent Neural Networks for reconstructing nonlinear dynamical systems from time series observations
por: Durstewitz, Daniel
Publicado: (2021) -
A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series
por: Demanuele, Charmaine, et al.
Publicado: (2015) -
A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements
por: Durstewitz, Daniel
Publicado: (2017) -
Nonlinear Complexity Analysis of Brain fMRI Signals in Schizophrenia
por: Sokunbi, Moses O., et al.
Publicado: (2014)