Cargando…
Practical Considerations for Accuracy Evaluation in Sensor-Based Machine Learning and Deep Learning
Accuracy evaluation in machine learning is based on the split of data into a training set and a test set. This critical step is applied to develop machine learning models including models based on sensor data. For sensor-based problems, comparing the accuracy of machine learning models using the tra...
Autores principales: | Hammad, Issam, El-Sankary, Kamal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719906/ https://www.ncbi.nlm.nih.gov/pubmed/31404972 http://dx.doi.org/10.3390/s19163491 |
Ejemplares similares
-
Applied Machine Learning for Health and Fitness: A Practical Guide to Machine Learning with Deep Vision, Sensors and IoT
por: Ashley, Kevin
Publicado: (2020) -
On the impact of smart sensor approximations on the accuracy of machine learning tasks
por: Jahier Pagliari, Daniele, et al.
Publicado: (2020) -
Deep learning framework for sensor array precision and accuracy enhancement
por: Payette, Julie, et al.
Publicado: (2023) -
Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling
por: Luo, Yi, et al.
Publicado: (2019) -
Practical Vitamin D Supplementation Using Machine Learning
por: Fugere, Tyler, et al.
Publicado: (2020)