Cargando…
A Comparative Study of Computational Methods for Compressed Sensing Reconstruction of EMG Signal
Wearable devices offer a convenient means to monitor biosignals in real time at relatively low cost, and provide continuous monitoring without causing any discomfort. Among signals that contain critical information about human body status, electromyography (EMG) signal is particular useful in monito...
Autores principales: | Manoni, Lorenzo, Turchetti, Claudio, Falaschetti, Laura, Crippa, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720172/ https://www.ncbi.nlm.nih.gov/pubmed/31412545 http://dx.doi.org/10.3390/s19163531 |
Ejemplares similares
-
Energy and Performance Analysis of Lossless Compression Algorithms for Wireless EMG Sensors
por: Biagetti, Giorgio, et al.
Publicado: (2021) -
Classifier Level Fusion of Accelerometer and sEMG Signals for Automatic Fitness Activity Diarization
por: Biagetti, Giorgio, et al.
Publicado: (2018) -
Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes
por: Biagetti, Giorgio, et al.
Publicado: (2018) -
Dataset from spirometer and sEMG wireless sensor for diaphragmatic respiratory activity monitoring
por: Biagetti, Giorgio, et al.
Publicado: (2019) -
A Deep Learning Model for Correlation Analysis between Electroencephalography Signal and Speech Stimuli
por: Alessandrini, Michele, et al.
Publicado: (2023)