Cargando…

The Neuroprotective Role of Coenzyme Q10 Against Lead Acetate-Induced Neurotoxicity Is Mediated by Antioxidant, Anti-Inflammatory and Anti-Apoptotic Activities

Heavy metal exposure, in lead (Pb) particularly, is associated with severe neuronal impairment though oxidative stress mediated by reactive oxygen species, and antioxidants may be used to abolish these adverse effects. This study investigated the potential neuroprotective role of coenzyme Q10 (CoQ(1...

Descripción completa

Detalles Bibliográficos
Autores principales: S. Yousef, Al Omar, A. Fahad, Alkhuriji, Abdel Moneim, Ahmed E., Metwally, Dina M., El-khadragy, Manal F., Kassab, Rami B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720293/
https://www.ncbi.nlm.nih.gov/pubmed/31412628
http://dx.doi.org/10.3390/ijerph16162895
Descripción
Sumario:Heavy metal exposure, in lead (Pb) particularly, is associated with severe neuronal impairment though oxidative stress mediated by reactive oxygen species, and antioxidants may be used to abolish these adverse effects. This study investigated the potential neuroprotective role of coenzyme Q10 (CoQ(10)) against lead acetate (PbAc)-induced neurotoxicity. Twenty-eight male Wistar albino rats were divided into four equal groups (n = 7) and treated as follows: the control group was injected with physiological saline (0.9% NaCl); the CoQ(10) group was injected with CoQ(10) (10 mg/kg); PbAc group was injected with PbAc (20 mg/kg); PbAc + CoQ(10) group was injected first with PbAc, and after 1 h with CoQ(10). All groups were injected intraperitoneally for seven days. PbAc significantly increased cortical lipid peroxidation, nitrate/nitrite levels, and inducible nitric oxide synthase expression, and decreased glutathione content, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase activity and mRNA expression, as well as nuclear factor erythroid 2–related factor 2 (Nrf2) and homoxygenase-1 (HO-1) expression. PbAc also promoted the secretion of interleukin-1ß and tumor necrosis factor-α, inhibited interleukin-10 production, triggered the activation of pro-apoptotic proteins, and suppressed anti-apoptotic proteins. Additionally, PbAc increased the cortical levels of serotonin, dopamine, norepinephrine, GABA, and glutamate, and decreased the level of ATP. However, treatment with CoQ(10) rescued cortical neurons from PbAc-induced neurotoxicity by restoring the balance between oxidants and antioxidants, activating the Nrf2/HO-1 pathway, suppressing inflammation, inhibiting the apoptotic cascade, and modulating cortical neurotransmission and energy metabolism. Altogether, our findings indicate that CoQ(10) has beneficial effects against PbAc-induced neuronal damage through its antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory activities.