Cargando…

Potential Functions of Gem-Associated Protein 2-Like Isoform X1 in the Oriental River Prawn Macrobrachium nipponense: Cloning, qPCR, In Situ Hybridization, and RNAi Analysis

Gem-associated protein 2-like isoform X1 (GEM) was previously predicted to be involved in the sexual development of male Macrobrachium nipponense. In this study, we analyze the GEM functions in depth using quantitative polymerase chain reaction (qPCR), in situ hybridization, and RNA interference (RN...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Shubo, Hu, Yuning, Fu, Hongtuo, Jiang, Sufei, Xiong, Yiwei, Qiao, Hui, Zhang, Wenyi, Gong, Yongsheng, Wu, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720513/
https://www.ncbi.nlm.nih.gov/pubmed/31426338
http://dx.doi.org/10.3390/ijms20163995
Descripción
Sumario:Gem-associated protein 2-like isoform X1 (GEM) was previously predicted to be involved in the sexual development of male Macrobrachium nipponense. In this study, we analyze the GEM functions in depth using quantitative polymerase chain reaction (qPCR), in situ hybridization, and RNA interference (RNAi). The full-length Mn-GEM cDNA sequence was 1018 base pairs (bp) long with an open reading frame of 777 bp encoding 258 amino acids. qPCR analysis of Mn-GEM in different tissues and developmental stages showed that Mn-GEM was highly expressed in the gonad and from post-larval developmental stage day 5 (PL5) to PL15, which indicated that GEM has potential roles in gonad differentiation and development in M. nipponense. In situ hybridization and qPCR analysis of various stages of the reproductive cycle of the testis and ovary indicated that GEM may promote spermatid development and gametogenesis in M. nipponense. After injecting with double-stranded RNA (dsRNA) of Mn-GEM, mRNA expression of Mn-insulin-like androgenic gland hormone (Mn-IAG) and the content of testosterone increased with the decrease of Mn-GEM expression, indicating that GEM has negative effects on the male sexual differentiation and development in M. nipponense. Results of this study highlight the functions of GEM in M. nipponense, which can be applied to future studies of male sexual development in M. nipponense and other crustacean species.