Cargando…

Effect of Layer Charge Density on Hydration Properties of Montmorillonite: Molecular Dynamics Simulation and Experimental Study

Four kinds of Ca-montmorillonite with different layer charge density were used to study the effect of charge density on their hydration properties by molecular dynamics simulation and experiments. The research results of Z-density distribution of water molecules, H(w) (hydrogen in water molecules),...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Jun, Li, Guoqing, Liu, Dongliang, Jiang, Shan, Wang, Guifang, Chen, Ping, Zhu, Xiangnan, Yao, Geng, Liu, Xiaodong, Lyu, Xianjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720539/
https://www.ncbi.nlm.nih.gov/pubmed/31426343
http://dx.doi.org/10.3390/ijms20163997
Descripción
Sumario:Four kinds of Ca-montmorillonite with different layer charge density were used to study the effect of charge density on their hydration properties by molecular dynamics simulation and experiments. The research results of Z-density distribution of water molecules, H(w) (hydrogen in water molecules), and Ca in the interlayer of montmorillonite show that the hydration properties of montmorillonite are closely related to its layer charge density. If the charge density is low, the water molecules in the interlayers are mainly concentrated on the sides of the central axis about –1.3 Å and 1.5 Å. As the charge density increases from 0.38(semi-cell) to 0.69(semi-cell), the water molecules are distributed −2.5 Å and 2.4 Å away from the siloxane surface (Si-O), the concentration of water molecules near the central axis decreases, and at the same time, Ca(2+) appears to gradually shift from the vicinity of the central axis to the Si-O surface on both sides in the montmorillonite layer. The simulation results of the radial distribution function (RDF) of the Ca-H(w), Ca-O(w) (oxygen in water molecules), and Ca-O(t) (the oxygen in the tetrahedron) show that the Ca(2+) and O(w) are more tightly packed together than that of H(w); with the increase of the charge density, due to the fact that the negative charge sites on the Si-O surface increase, under the action of electrostatic attraction, some of the Ca(2+) are pulled towards the Si-O surface, which is more obvious when the layer charge density of the montmorillonite is higher. The results of the RDF of the O(t)-H(w) show that with the increase of charge density, the number of hydrogen bonds formed by O(t) and H(w) in the interlayers increase, and under the action of hydrogen bonding force, the water molecules near the central axis are pulled towards the two sides of Si-O surface. As a result, the arrangement of water molecules is more compact, and the structure is obvious. Correspondingly, the self-diffusion coefficient shows that the higher the layer charge density, the lower the self-diffusion coefficient of water molecules in interlayers is and the worse the hydration performance of montmorillonite. The experimental results of the experiments fit well with the above simulation results.