Cargando…
Chlorin e6-Loaded PEG-PCL Nanoemulsion for Photodynamic Therapy and In Vivo Drug Delivery
We fabricated poly (ethylene glycol)-block-polycaprolactone (PEG-b-PCL) nanoemulsion for drug delivery and photodynamic therapy. PEG-b-PCL effectively stabilized the interface between water and soybean oil, and the resulting nanoemulsion was about 220.3 nm in diameter with spherical shape. For photo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720751/ https://www.ncbi.nlm.nih.gov/pubmed/31416237 http://dx.doi.org/10.3390/ijms20163958 |
Sumario: | We fabricated poly (ethylene glycol)-block-polycaprolactone (PEG-b-PCL) nanoemulsion for drug delivery and photodynamic therapy. PEG-b-PCL effectively stabilized the interface between water and soybean oil, and the resulting nanoemulsion was about 220.3 nm in diameter with spherical shape. For photodynamic therapy (PDT), chlorin e6 (Ce6) was loaded into the nanoemulsion as a photosensitizer (PS). These chlorin e6-loaded PEG-PCL nanoemulsions (Ce6-PCL-NEs) showed efficient cellular uptake and, upon laser irradiation, generated singlet oxygen to kill tumor cells. Particularly, Ce6-PCL-NEs showed prolonged blood circulation and about 60% increased tumor accumulation compared to free Ce6 after intravenous injection to 4T1 tumor-bearing mice. These results demonstrate the promising potential of Ce6-PCL-NEs for efficient PDT and in vivo drug delivery to tumor tissue. |
---|