Cargando…

Improvement of the Bonding Properties of Mineral Trioxide Aggregate by Elastin-Like Polypeptide Supplementation

INTRODUCTION: Elastin-like polypeptide (ELP) supplementation was previously reported to enhance the physical properties of mineral trioxide aggregate (MTA). The aim of this study was to investigate the effect of ELP supplementation on the bonding properties of MTA to dentin. METHODS: Two types of EL...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hyun-Jung, Lee, Donghyun, Cho, Seungryong, Jang, Ji-Hyun, Kim, Sahng Gyoon, Kim, Sun-Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720822/
https://www.ncbi.nlm.nih.gov/pubmed/31531154
http://dx.doi.org/10.1155/2019/3484396
Descripción
Sumario:INTRODUCTION: Elastin-like polypeptide (ELP) supplementation was previously reported to enhance the physical properties of mineral trioxide aggregate (MTA). The aim of this study was to investigate the effect of ELP supplementation on the bonding properties of MTA to dentin. METHODS: Two types of ELPs were synthesized and mixed with MTA in a 0.3 liquid/powder ratio. The push-out bond strength test and interfacial observation with scanning electron microscopy were performed for ELP-supplemented MTA. The porosity of MTA fillings in the cavity was observed with microcomputed tomography. The stickiness, flow rate, and contact angle were additionally measured for potential increased bonding properties. RESULTS: ELP supplementation improved the bond strength of MTA to dentin. MTA supplemented by a specific ELP exhibited a less porous structure, higher stickiness, and higher flow rate. ELPs also decreased the contact angle to dentin. CONCLUSIONS: This research data verifies that ELP improves the bonding properties of MTA to a tooth structure. The sticky and highly flowable characteristics of ELP-supplemented MTA may provide intimate contact with dentin and supply a less porous cement structure, which might improve the bonding properties of MTA.