Cargando…

Dietary Zinc and Fibre Source can Influence the Mineral and Antioxidant Status of Piglets

SIMPLE SUMMARY: The post-weaning period is one of the most critical phases in a pig’s life, when trace mineral requirements increase because of the inadequate absorptive capacity of the intestine and reduced feed intake. Mineral bioavailability can be increased by using more available feed additives...

Descripción completa

Detalles Bibliográficos
Autores principales: Holodova, Monika, Cobanova, Klaudia, Sefcikova, Zuzana, Barszcz, Marcin, Tuśnio, Anna, Taciak, Marcin, Gresakova, Lubomira
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720890/
https://www.ncbi.nlm.nih.gov/pubmed/31362348
http://dx.doi.org/10.3390/ani9080497
Descripción
Sumario:SIMPLE SUMMARY: The post-weaning period is one of the most critical phases in a pig’s life, when trace mineral requirements increase because of the inadequate absorptive capacity of the intestine and reduced feed intake. Mineral bioavailability can be increased by using more available feed additives or the reduction of dietary antinutrients, such as phytates or fibres, in pig nutrition. Therefore, our study was focused on improving the absorption of trace elements, mainly zinc, from the small intestine of piglets using more efficient dietary sources, such as an organic form of zinc and potato fibre. ABSTRACT: The study investigated the effect of dietary zinc glycine chelate and potato fibre on the absorption and utilisation of Zn, Cu, Fe, and Mn; the activity of Zn-containing enzymes (superoxide dismutase, SOD; alkaline phosphatase, ALP); and zinc transporter concentrations (metalothionein1, MT1; zinc transporter1, ZnT1) in tissues, with a special emphasis on the small intestine. Twenty-four barrows (Danbred × Duroc) were randomly allotted to four diets (supplemented with 10 g/kg of crude fibre and 120 mg Zn/kg) that consisted of cellulose and either zinc sulphate (C) or zinc glycinate (ZnGly), or contained potato fibre supplemented with ZnSO(4) (PF) or ZnGly (PF + ZnGly). Feeding PF can influence the Zn absorption in the small intestine due to reduced zinc transporters MT1 and ZnT1 in the jejunum. The activity of antioxidant enzyme SOD and liver ZnT1, and duodenal iron concentrations were increased in the PF treatments. Dietary ZnGly did not significantly influence the Zn distribution, but it may alter the absorption of Fe and Mn. Given the elevated content of thiol groups and the Zn/Cu ratio in plasma, as well as the altered SOD activity and MT content in the tissues, we can conclude that feeding PF and ZnGly can influence the mineral and antioxidant status of growing piglets. However, further research is needed in order to elucidate the effect of both dietary sources on the transport systems of other minerals in enterocytes.